Skip to main content
Log in

Blood–Brain Barrier Permeability and Brain Uptake Mechanism of Kainic Acid and Dihydrokainic Acid

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The glutamatergic neurotransmitter system is involved in important neurophysiological processes and thus constitutes a promising target for the treatment of neurological diseases. The two ionotropic glutamate receptor agonists kainic acid (KA) and dihydrokainic acid (DHK) have been used as research tools in various in vivo central nervous system disease models in rodents, as well as being templates in the design of novel ligands affecting the glutamatergic system. Both molecules are highly polar but yet capable of crossing the blood–brain barrier (BBB). We used an in situ rat brain perfusion technique to determine the brain uptake mechanism and permeability across the BBB. To determine KA and DHK concentrations in the rat brain, simple and rapid sample preparation and liquid chromatography mass spectrometer methods were developed. According to our results the BBB permeability of KA and DHK is low, 0.25 × 10−6 and 0.28 × 10−6 cm/s for KA and DHK, respectively. In addition, the brain uptake is mediated by passive diffusion, and not by active transport. Furthermore, the non-specific plasma and brain protein binding of KA and DHK was determined to be low, which means that the unbound drug volume of distribution in brain is also low. Therefore, even though the total KA and DHK concentrations in the brain are low after systemic dosing, the concentrations in the vicinity of the glutamate receptors are sufficient for their activation and thus the observed efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

P:

Brain permeability

fu,homogenate :

Buffer to tissue concentration ratio

CNS:

Central nervous system

DHK:

Dihydrokainic acid

ESI:

Electrospray ionization

KA:

Kainic acid

M6G:

Morphine 6-beta-d-glucuronide

MRM:

Multiple reaction monitoring

Oatp:

Organic anion transporting polypeptide

PBS:

Phosphate buffered saline

\({\text{x}}_{{{\text{G}}^{ - } }}\) :

Transporter for anionic amino acids

fu,brain :

Unbound fraction in brain

fu,plasma :

Unbound fraction in plasma

QC:

Quality control

RSD:

Relative standard deviation

K in :

Unidirectional transfer constant

References

  1. Huneau C, Benquet P, Dieuset G, Biraben A, Martin B, Wendling F (2013) Shape features of epileptic spikes are a marker of epileptogenesis in mice. Epilepsia 54:2219–2227. doi:10.1111/epi.12406

    Article  PubMed  Google Scholar 

  2. Vivash L, Gregoire MC, Bouilleret V, Berard A, Wimberley C, Binns D, Roselt P, Katsifis A, Myers DE, Hicks RJ, O’Brien TJ, Dedeurwaerdere S (2014) In vivo measurement of hippocampal GABAA/cBZR density with [18F]-flumazenil PET for the study of disease progression in an animal model of temporal lobe epilepsy. PLoS One 9:e86722. doi:10.1371/journal.pone.0086722

    Article  PubMed Central  PubMed  Google Scholar 

  3. Luquin MR, Saldise L, Guillen J, Belzunegui S, San Sebastian W, Izal A, Garrido P, Vazquez M (2006) Does increased excitatory drive from the subthalamic nucleus contribute to dopaminergic neuronal death in parkinson’s disease? Exp Neurol 201:407–415. doi:10.1016/j.expneurol.2006.04.033

    Article  CAS  PubMed  Google Scholar 

  4. Miller BR, Dorner JL, Bunner KD, Gaither TW, Klein EL, Barton SJ, Rebec GV (2012) Up-regulation of GLT1 reverses the deficit in cortically evoked striatal ascorbate efflux in the R6/2 mouse model of Huntington’s disease. J Neurochem 121:629–638. doi:10.1111/j.1471-4159.2012.07691.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ramirez C, Tercero I, Pineda A, Burgos JS (2011) Simvastatin is the statin that most efficiently protects against kainate-induced excitotoxicity and memory impairment. J Alzheimer’s Dis 24:161–174. doi:10.3233/JAD-2010-101653

    CAS  Google Scholar 

  6. Bunch L, Krogsgaard-Larsen P (2009) Subtype selective kainic acid receptor agonists: discovery and approaches to rational design. Med Res Rev 29:3–28

    Article  CAS  PubMed  Google Scholar 

  7. Bunch L, Nielsen B, Jensen AA, Brauner-Osborne H (2006) Rational design and enantioselective synthesis of (1R,4S,5R,6S)-3-azabicyclo [3.3.0] octane-4, 6-dicarboxylic acid a novel inhibitor at human glutamate transporter subtypes 1, 2, and 3. J Med Chem 49:172–178. doi:10.1021/jm0508336

    Article  CAS  PubMed  Google Scholar 

  8. Larsen AM, Venskutonyte R, Valades EA, Nielsen B, Pickering DS, Bunch L (2011) Discovery of a new class of ionotropic glutamate receptor antagonists by the rational design of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid. ACS Chem Neurosci 2:107–114. doi:10.1021/cn100093f

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Juknaite L, Venskutonyte R, Assaf Z, Faure S, Gefflaut T, Aitken DJ, Nielsen B, Gajhede M, Kastrup JS, Bunch L, Frydenvang K, Pickering DS (2012) Pharmacological and structural characterization of conformationally restricted (S)-glutamate analogues at ionotropic glutamate receptors. J Struct Biol 180:39–46. doi:10.1016/j.jsb.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  10. Battaglia A, Bertoluzza A, Calbucci F, Eusebi V, Giorgianni P, Ricci R, Tosi R, Tugnoli V (1999) High-performance liquid chromatographic analysis of physiological amino acids in human brain tumors by pre-column derivatization with phenylisothiocyanate. J Chromatogr B Biomed Sci Appl 730:81–93

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Zhao T, Cheng T, Liu X, Zhang H (2012) Rapid resolution chromatography (RRLC) analysis of amino acids using pre-column derivatization. J Chromatogr B 906:91–95

    Article  CAS  Google Scholar 

  12. Gynther M, Laine K, Ropponen J, Leppanen J, Mannila A, Nevalainen T, Savolainen J, Jarvinen T, Rautio J (2008) Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem 51:932–936. doi:10.1021/jm701175d

    Article  CAS  PubMed  Google Scholar 

  13. Kalliokoski A, Niemi M (2009) Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 158:693–705. doi:10.1111/j.1476-5381.2009.00430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Smith QR (2000) Transport of glutamate and other amino acids at the blood–brain barrier. J Nutr 130:1016S–1022S

    CAS  PubMed  Google Scholar 

  15. Hawkins RA (2009) The blood–brain barrier and glutamate. Am J Clin Nutr 90:867S–874S. doi:10.3945/ajcn.2009.27462BB

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fenstermacher J, Gross P, Sposito N, Acuff V, Pettersen S, Gruber K (1988) Structural and functional variations in capillary systems within the brain. Ann N Y Acad Sci 529:21–30. doi:10.1111/j.1749-6632.1988.tb51416

    Article  CAS  PubMed  Google Scholar 

  17. Kalvass JC, Maurer TS (2002) Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 23:327–338. doi:10.1002/bdd.325

    Article  CAS  PubMed  Google Scholar 

  18. Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S, Lewis AV, Porter RA, Jeffrey P (2007) Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther 322:205–213. doi:10.1124/jpet.107.121525

    Article  CAS  PubMed  Google Scholar 

  19. Maucher Fuquay J, Muha N, Wang Z, Ramsdell JS (2012) Elimination kinetics of domoic acid from the brain and cerebrospinal fluid of the pregnant rat. Chem Res Toxicol 25:2805–2809

    Article  CAS  PubMed  Google Scholar 

  20. Smith QR (2000) Transport of glutamate and other amino acids at the blood–brain barrier. J Nutr 130:1016S–1022S

    CAS  PubMed  Google Scholar 

  21. Ronaldson PT, Davis TP (2013) Targeted drug delivery to treat pain and cerebral hypoxia. Pharmacol Rev 65:291–314

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25:1737–1750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Stain-Texier F, Boschi G, Sandouk P, Scherrmann JM (1999) Elevated concentrations of morphine 6-beta-d-glucuronide in brain extracellular fluid despite low blood–brain barrier permeability. Br J Pharmacol 128:917–924. doi:10.1038/sj.bjp.0702873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. van Vliet EA, Otte WM, Gorter JA, Dijkhuizen RM, Wadman WJ (2014) Longitudinal assessment of blood–brain barrier leakage during epileptogenesis in rats. A quantitative MRI study. Neurobiol Dis 63:74–84

    Article  PubMed  Google Scholar 

  25. Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H (2008) Seizure-induced up-regulation of P-glycoprotein at the blood–brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol 73:1444–1453

    Article  CAS  PubMed  Google Scholar 

  26. Loscher W, Potschka H (2005) Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2:86–98

    Article  PubMed Central  PubMed  Google Scholar 

  27. Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, Adkison KK, Polli JW (2002) Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 303:1029–1037

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by GluTarget (http://www.glutarget.ku.dk/), The Finnish Cultural Foundation and The Saastamoinen Foundation. The authors wish to thank Heidi Nielsen for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl S. Pickering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gynther, M., Petsalo, A., Hansen, S.H. et al. Blood–Brain Barrier Permeability and Brain Uptake Mechanism of Kainic Acid and Dihydrokainic Acid. Neurochem Res 40, 542–549 (2015). https://doi.org/10.1007/s11064-014-1499-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1499-4

Keywords

Navigation