Skip to main content
Log in

Glatiramer Acetate Guards Against Rapid Memory Decline During Relapsing-Remitting Experimental Autoimmune Encephalomyelitis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cognitive decline presents a therapeutic challenge for patients with multiple sclerosis (MS), a disease characterized by recurrent autoimmune demyelination and by progressive CNS degeneration. Glatiramer acetate (GA, also known as Copolymer 1, Cop-1, or Copaxone), commonly used to treat MS, reduces the frequency of relapses; it has both anti-inflammatory and neuroprotective properties. However, clinical trials have not definitively shown that GA improves cognitive impairment during MS. Using an in vivo animal model of autoimmune demyelination, i.e., relapsing-remitting experimental autoimmune encephalomyelitis (EAE), we tested short-term memory in EAE mice (EAE), in EAE mice treated with GA for 10 days starting at the time of immunization (EAE + GA), and in age-matched healthy, naïve mice (Naïve). Short-term memory was assessed using the cross-maze test at 10, 20, and 30 days post-immunization (d.p.i.); data were analyzed at each time point and over time. At 10 d.p.i., EAE and EAE + GA mice had better memory function than Naïve mice. However, at the later time points, EAE mice had a steep negative slope of memory function (indicating decline), whereas EAE + GA mice had a flatter, less-negative slope of memory function. Notably, the memory function of EAE mice significantly decreased over time compared with that of Naïve mice, indicating that EAE had a negative impact on cognitive ability. In contrast, there was no statistically significant difference between the slopes of memory function in mice with EAE treated with GA versus Naïve mice, which revealed effective, albeit partial, protection by GA treatment against progressive memory decline during EAE disease. Of particular interest, although EAE mice had memory decline over 30 d.p.i., their clinical disease scores improved during that time. Thus, our results suggest that EAE mice had a significant progressive memory decline and that GA, administered at the time of immunization, partially guards against rapid memory decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rahn KA, Watkins CC, Alt J, Rais R, Stathis M, Grishkan I, Crainiceau CM, Pomper MG, Rojas C, Pletnikov MV, Calabresi PA, Brandt J, Barker PB, Slusher BS, Kaplin AI (2012) Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis. Proc Natl Acad Sci USA 109:20101–20106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kallaur AP, Kaimen-Maciel DR, Morimoto HK, Watanabe MA, Georgeto SM, Reiche EM (2011) Genetic polymorphisms associated with the development and clinical course of multiple sclerosis. Int J Mol Med 28:467–479

    CAS  PubMed  Google Scholar 

  3. Benedict RH, Zivadinov R (2011) Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol 7:332–342

    Article  PubMed  Google Scholar 

  4. Dutta R, Chang A, Doud MK, Kidd GJ, Ribaudo MV, Young EA, Fox RJ, Staugaitis SM, Trapp BD (2011) Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann Neurol 69:445–454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Berard JL, Wolak K, Fournier S, David S (2010) Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Glia 58:434–445

    Article  PubMed  Google Scholar 

  6. Weinshenker BG (1998) Natural history of multiple sclerosis. Ann Neurol 36:S6–S11

    Article  Google Scholar 

  7. Bobholz JA, Rao SM (2003) Cognitive dysfunction in multiple sclerosis: a review of recent developments. Curr Opin Neurol 16:283–288

    Article  PubMed  Google Scholar 

  8. Dutta R, Chomyk AM, Chang A, Ribaudo MV, Deckard SA, Doud MK, Edberg DD, Bai B, Li M, Baranzini SE, Fox RJ, Staugaitis SM, Macklin WB, Trapp BD (2013) Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miR-124 and reduced AMPA receptors. Ann Neurol 73:637–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ziehn MO, Avedisian AA, Tiwari-Woodruff S, Voskuhl RR (2010) Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab Invest 90:774–786

    Article  PubMed Central  PubMed  Google Scholar 

  10. Vanguilder HD, Bixler GV, Sonntag WE, Freeman WM (2012) Hippocampal expression of myelin-associated inhibitors is induced with age-related cognitive decline and correlates with deficits of spatial learning and memory. J Neurochem 121:77–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136

    Article  CAS  PubMed  Google Scholar 

  12. Nisticò R, Mango D, Mandolesi G, Piccinin S, Berretta N, Pignatelli M, Feligioni M, Musella A, Gentile A, Mori F, Bernardi G, Nicoletti F, Mercuri NB, Centonze D (2013) Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS One 8:e54666

    Article  PubMed Central  PubMed  Google Scholar 

  13. Carter NJ, Keating GM (2010) Glatiramer acetate: a review of its use in relapsing-remitting multiple sclerosis and in delaying the onset of clinically definite multiple sclerosis. Drugs 70:1545–1577

    Article  CAS  PubMed  Google Scholar 

  14. Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 94:10821–10826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Miller A, Shapiro S, Gershtein R, Kinarty A, Rawashdeh H, Honigman S, Lahat N (1998) Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol 92:113–121

    Article  CAS  PubMed  Google Scholar 

  16. Hong J, Li N, Zhang X, Zheng B, Zhang JZ (2005) Induction of CD4+ CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci USA 102:6449–6454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Saresella M, Marventano I, Longhi R, Lissoni F, Trabattoni D, Mendozzi L, Caputo D, Clerici M (2008) CD4+ CD25+ FoxP3+ PD1− regulatory T cells in acute and stable relapsing-remitting multiple sclerosis and their modulation by therapy. FASEB J 22:3500–3508

    Article  CAS  PubMed  Google Scholar 

  18. Gentile A, Rossi S, Studer V, Motta C, De Chiara V, Musella A, Sepman H, Fresegna D, Musumeci G, Grasselli G, Haji N, Weiss S, Hayardeny L, Mandolesi G, Centonze D (2013) Glatiramer acetate protects against inflammatory synaptopathy in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 8:651–663

    Article  PubMed  Google Scholar 

  19. Aharoni R, Arnon R, Eilam R (2005) Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 25:8217–8228

    Article  CAS  PubMed  Google Scholar 

  20. Aharoni R, Eilam R, Domev H, Labunskay G, Sela M, Arnon R (2005) The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci USA 102:19045–19050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ratchford JN, Endres CJ, Hammoud DA, Pomper MG, Shiee N, McGready J, Pham DL, Calabresi PA (2012) Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol 259:1199–1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pul R, Moharregh-Khiabani D, Škuljec J, Skripuletz T, Garde N, Voss EV, Stangel M (2011) Glatiramer acetate modulates TNF-α and IL-10 secretion in microglia and promotes their phagocytic activity. J Neuroimmune Pharmacol 6:381–388

    Article  PubMed  Google Scholar 

  23. Liu J, Johnson TV, Lin J, Ramirez SH, Bronich TK, Caplan S, Persidsky Y, Gendelman HE, Kipnis J (2007) T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 37:3143–3154

    Article  CAS  PubMed  Google Scholar 

  24. Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ (2000) CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 192:899–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mohler EG, Shacham S, Noiman S, Lezoualc’h F, Robert S, Gastineau M, Rutkowski J, Marantz Y, Dumuis A, Bockaert J, Gold PE, Ragozzino ME (2007) VRX-03011, a novel 5-HT4 agonist, enhances memory and hippocampal acetylcholine efflux. Neuropharmacology 53:563–573

    Article  CAS  PubMed  Google Scholar 

  26. Aharoni R, Vainshtein A, Stock A, Eilam R, From R, Shinder V, Arnon R (2011) Distinct pathological patterns in relapsing-remitting and chronic models of experimental autoimmune enchephalomyelitis and the neuroprotective effect of glatiramer acetate. J Autoimmun 37:228–241

    Article  CAS  PubMed  Google Scholar 

  27. Amato MP, Langdon D, Montalban X, Benedict RH, Deluca J, Krupp LB, Thompson AJ, Comi G (2012) Treatment of cognitive impairment in multiple sclerosis: position paper. J Neurol 2013(260):1452–1468. doi:10.1007/s00415-012-6678-0

    Google Scholar 

  28. Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, Patarroyo JC, Stüve O, Sobel RA, Steinman L, Zamvil SS (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13:935–943

    Article  CAS  PubMed  Google Scholar 

  29. Mandolesi G, Grasselli G, Musumeci G, Centonze D (2010) Cognitive deficits in experimental autoimmune encephalomyelitis: neuroinflammation and synaptic degeneration. Neurol Sci 31:S255–S259. doi:10.1007/s10072-010-0369-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Professor Michael Ragozzino (University of Illinois at Chicago) for his valuable advice with the memory testing; Professors Douglas Feinstein (University of Illinois at Chicago) and William Karpus (Northwestern University) for their knowledgeable input with the relapsing-remitting EAE model; and Professor Sally Freels (University of Illinois at Chicago) for statistical analysis.

Conflict of interest

This study was supported by a Grant from Teva Pharmaceutical Industries (Israel) (P.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia LoPresti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LoPresti, P. Glatiramer Acetate Guards Against Rapid Memory Decline During Relapsing-Remitting Experimental Autoimmune Encephalomyelitis. Neurochem Res 40, 473–479 (2015). https://doi.org/10.1007/s11064-014-1491-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1491-z

Keywords

Navigation