Skip to main content
Log in

Biochanin A Inhibits Lipopolysaccharide-Induced Inflammatory Cytokines and Mediators Production in BV2 Microglia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Biochanin A, one of the major isoflavonoids in red clover or cabbage, has been reported to have anti-inflammatory effects. However, the molecular mechanism underlying the anti-inflammatory effects of biochanin A has not been completely elucidated. The aim of this study was to investigate the anti-inflammatory effect and mechanism on lipopolysaccharide (LPS)-stimulated BV2 microglia. The results showed that biochanin A suppressed LPS-induced inflammatory mediators nitric oxide, prostaglandin E2 and inflammatory cytokines TNF-α and IL-1β production. LPS-induced NF-κB activation was also inhibited by biochanin A. In addition, biochanin A up-regulated the expression of PPAR-γ and the anti-inflammatory effects of biochanin A can be abolished by PPAR-γ antagonist GW9662. These results suggest that biochanin A exerts an anti-inflammatory property by activating PPAR-γ, thereby attenuating NF-κB activation and the release of pro-inflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Merighi S, Gessi S, Varani K, Fazzi D, Stefanelli A, Borea PA (2013) Morphine mediates a proinflammatory phenotype via mu-opioid receptor-PKCϵ-Akt-ERK1/2 signaling pathway in activated microglial cells. Biochem Pharmacol 86:487–496

    Article  CAS  PubMed  Google Scholar 

  2. Khatchadourian A, Bourque SD, Richard VR, Titorenko VI, Maysinger D (2012) Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia. Biochim Biophys Acta 1821:607–617

    Article  CAS  PubMed  Google Scholar 

  3. Kim EA, Han AR, Choi J, Ahn JY, Choi SY, Cho SW (2014) Anti-inflammatory mechanisms of N-adamantyl-4-methylthiazol-2-amine in lipopolysaccharide-stimulated BV-2 microglial cells. Int Immunopharmacol 22:73–83

    Article  CAS  PubMed  Google Scholar 

  4. Jeong JW, Lee HH, Han MH, Kim GY, Kim WJ, Choi YH (2014) Anti-inflammatory effects of genistein via suppression of the toll-like receptor 4-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglia. Chem Biol Interact 212:30–39

    Article  CAS  PubMed  Google Scholar 

  5. Nuzzo D, Picone P, Caruana L, Vasto S, Barera A, Caruso C, Di Carlo M (2014) Inflammatory mediators as biomarkers in brain disorders. Inflammation 37:639–648

    CAS  PubMed  Google Scholar 

  6. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuro-Psychopharmacol 35:744–759

    Article  CAS  Google Scholar 

  7. Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346

    Article  PubMed Central  PubMed  Google Scholar 

  8. Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Whitehouse PJ (2014) The end of Alzheimer’s disease—from biochemical pharmacology to ecopsychosociology: a personal perspective. Biochem Pharmacol 88:677–681

    Article  CAS  PubMed  Google Scholar 

  10. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    Article  CAS  PubMed  Google Scholar 

  11. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605

    Article  CAS  PubMed  Google Scholar 

  12. Bhardwaj V, Tadinada SM, Jain A, Sehdev V, Daniels CK, Lai JC, Bhushan A (2014) Biochanin A reduces pancreatic cancer survival and progression. Anticancer Drugs 25:296–302

    Article  CAS  PubMed  Google Scholar 

  13. Tan JW, Tham CL, Israf DA, Lee SH, Kim MK (2013) Neuroprotective effects of biochanin A against glutamate-induced cytotoxicity in PC12 cells via apoptosis inhibition. Neurochem Res 38:512–518

    Article  CAS  PubMed  Google Scholar 

  14. Michaelis M, Sithisarn P, Cinatl J Jr (2014) Effects of flavonoid-induced oxidative stress on anti-H5N1 influenza a virus activity exerted by baicalein and biochanin A. BMC Res Notes 7:384

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kole L, Giri B, Manna SK, Pal B, Ghosh S (2011) Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NF κB nuclear translocation. Eur J Pharmacol 653:8–15

    Article  CAS  PubMed  Google Scholar 

  16. Qiu L, Lin B, Lin Z, Lin Y, Lin M, Yang X (2012) Biochanin A ameliorates the cytokine secretion profile of lipopolysaccharide-stimulated macrophages by a PPARγ-dependent pathway. Mol Med Rep 5:217–222

    CAS  PubMed  Google Scholar 

  17. Chung MJ, Sohng JK, Choi DJ, Park YI (2013) Inhibitory effect of phloretin and biochanin A on IgE-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells. Life Sci 93:401–408

    Article  PubMed  Google Scholar 

  18. Ko WC, Lin LH, Shen HY, Lai CY, Chen CM, Shih CH (2011) Biochanin a, a phytoestrogenic isoflavone with selective inhibition of phosphodiesterase 4, suppresses ovalbumin-induced airway hyperresponsiveness. Evid-Based Complement Altern Med: eCAM 2011:635058

    Article  Google Scholar 

  19. Bocchini V, Mazzolla R, Barluzzi R, Blasi E, Sick P, Kettenmann H (1992) An immortalized cell line expresses properties of activated microglial cells. J Neurosci Res 31:616–621

    Article  CAS  PubMed  Google Scholar 

  20. Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1–7

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240

    Article  CAS  PubMed  Google Scholar 

  22. Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321

    Article  CAS  PubMed  Google Scholar 

  23. Klegeris A, McGeer EG, McGeer PL (2007) Therapeutic approaches to inflammation in neurodegenerative disease. Curr Opin Neurol 20:351–357

    Article  CAS  PubMed  Google Scholar 

  24. Lee KH, Choi EM (2005) Biochanin A stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells. Biol Pharm Bull 28:1948–1953

    Article  CAS  PubMed  Google Scholar 

  25. Saviranta NMM, Veeroos L, Granlund LJ, Hassinen VH, Kaarniranta K, Karjalainen RO (2011) Plant flavonol quercetin and isoflavone biochanin A differentially induce protection against oxidative stress and inflammation in ARPE-19 cells. Food Res Int 44:109–113

    Article  CAS  Google Scholar 

  26. Kim YA, Kim GY, Park KY, Choi YH (2007) Resveratrol inhibits nitric oxide and prostaglandin E2 production by lipopolysaccharide-activated C6 microglia. J Med Food 10:218–224

    Article  CAS  PubMed  Google Scholar 

  27. Brown GC, Borutaite V (2002) Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic Biol Med 33:1440–1450

    Article  CAS  PubMed  Google Scholar 

  28. Perry VH (2004) The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 18:407–413

    Article  CAS  PubMed  Google Scholar 

  29. Ha SK, Moon E, Kim SY (2010) Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci Lett 485:143–147

    Article  CAS  PubMed  Google Scholar 

  30. Zhong LM, Zong Y, Sun L, Guo JZ, Zhang W, He Y, Song R, Wang WM, Xiao CJ, Lu D (2012) Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 7:e32195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hoozemans JJ, Veerhuis R, Rozemuller JM, Eikelenboom P (2006) Neuroinflammation and regeneration in the early stages of Alzheimer’s disease pathology. Int J Dev Neurosci 24:157–165

    Article  CAS  PubMed  Google Scholar 

  32. Jiao J, Xue B, Zhang L, Gong Y, Li K, Wang H, Jing L, Xie J, Wang X (2008) Triptolide inhibits amyloid-β1-42-induced TNF-α and IL-1β production in cultured rat microglia. J Neuroimmunol 205:32–36

    Article  CAS  PubMed  Google Scholar 

  33. Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    Article  CAS  PubMed  Google Scholar 

  34. Rojo LE, Fernandez JA, Maccioni AA, Jimenez JM, Maccioni RB (2008) Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch Med Res 39:1–16

    Article  CAS  PubMed  Google Scholar 

  35. Uda S, Spolitu S, Angius F, Collu M, Accossu S, Banni S, Murru E, Sanna F, Batetta B (2013) Role of HDL in cholesteryl ester metabolism of lipopolysaccharide-activated P388D1 macrophages. J Lipid Res 54:3158–3169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Liu H, Wu X, Dong Z, Luo Z, Zhao Z, Xu Y, Zhang JT (2013) Fatty acid synthase causes drug resistance by inhibiting TNF-α and ceramide production. J Lipid Res 54:776–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yu H, Valerio M, Bielawski J (2013) Fenretinide inhibited de novo ceramide synthesis and proinflammatory cytokines induced by Aggregatibacter actinomycetemcomitans. J Lipid Res 54:189–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. McGrath KC, Li XH, Whitworth PT, Kasz R, Tan JT, McLennan SV, Celermajer DS, Barter PJ, Rye KA, Heather AK (2014) High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation. J Lipid Res 55:421–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhao Z, Tang X, Zhao X, Zhang M, Zhang W, Hou S, Yuan W, Zhang H, Shi L, Jia H, Liang L, Lai Z, Gao J, Zhang K, Fu L, Chen W (2014) Tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury in different models possibly through suppression of NF-κB activation. Biochem Pharmacol 90:73–87

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, Xu Y, Yu Q, Sun Q, Xu Y, Gu Q, Xu X (2014) H-RN, a novel antiangiogenic peptide derived from hepatocyte growth factor inhibits inflammation in vitro and in vivo through PI3K/AKT/IKK/NF-κB signal pathway. Biochem Pharmacol 89:255–265

    Article  CAS  PubMed  Google Scholar 

  41. Kim MH, Son YJ, Lee SY, Yang WS, Yi YS, Yoon DH, Yang Y, Kim SH, Lee D, Rhee MH, Kang H, Kim TW, Sung GH, Cho JY (2013) JAK2-targeted anti-inflammatory effect of a resveratrol derivative 2,4-dihydroxy-N-(4-hydroxyphenyl)benzamide. Biochem Pharmacol 86:1747–1761

    Article  CAS  PubMed  Google Scholar 

  42. Hamaguchi M, Sakaguchi S (2012) Regulatory T cells expressing PPAR-γ control inflammation in obesity. Cell Metab 16:4–6

    Article  CAS  PubMed  Google Scholar 

  43. Neri T, Armani C, Pegoli A, Cordazzo C, Carmazzi Y, Brunelleschi S, Bardelli C, Breschi MC, Paggiaro P, Celi A (2011) Role of NF-κB and PPAR-γ in lung inflammation induced by monocyte-derived microparticles. Eur Respir J 37:1494–1502

    Article  CAS  PubMed  Google Scholar 

  44. Tezera LB, Hampton J, Jackson SK, Davenport V (2011) Neisseria lactamica attenuates TLR-1/2-induced cytokine responses in nasopharyngeal epithelial cells using PPAR-γ. Cell Microbiol 13:554–568

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG (2014) Natural product agonists of peroxisome proliferator-activated receptor γ (PPARγ): a review. Biochem Pharmacol 92(1):73–89. doi:10.1016/j.bcp.2014.07.018

Download references

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-an Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, Wa. Biochanin A Inhibits Lipopolysaccharide-Induced Inflammatory Cytokines and Mediators Production in BV2 Microglia. Neurochem Res 40, 165–171 (2015). https://doi.org/10.1007/s11064-014-1480-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1480-2

Keywords

Navigation