Skip to main content
Log in

Non-competitive Inhibition of Nicotinic Acetylcholine Receptors by Ladybird Beetle Alkaloids

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ladybird beetles (Family Coccinellidae) secrete an alkaloid rich venom from their leg joints that protects them from predators. Coccinellines, the major venom constituents, are alkaloids composed of three fused piperidine rings that share a common nitrogen atom. Although many coccinellines have been isolated and chemically characterized, their pharmacological properties are essentially unknown. Using radioligand binding and functional assays we investigated the actions of several coccinellines on skeletal muscle and α7 nicotinic acetylcholine receptors (nAChRs). The alkaloids were shown to displace the specific binding of tritiated piperidyl-N-(1-(2-thienyl)cyclohexyl)-3,4-piperidine ([3H]-TCP), which has been shown to bind deep within the ion channel of the electric fish (Torpedo) muscle nAChR. The stereoisomers precoccinelline and hippodamine (whose nitrogens are predicted to be ionized at physiological pH) and their respective analogs N-methyl-precoccinelline and N-methyl-hippodamine (whose quaternary nitrogens are permanently charged) displayed similar IC50s for inhibition of [3H]-TCP binding. However, the corresponding precoccinelline and hippodamine N-oxides, coccinelline and convergine (which have an electronegative oxygen bonded to an electropositive nitrogen) displayed significantly higher binding IC50s. Finally, exochomine, a dimeric coccinelline containing the hippodamine structure, displayed the highest IC50 (lowest affinity) for displacing specific [3H]-TCP binding. The presence of a desensitizing concentration (10−3 M) of carbachol (CCh) had little or no effect on the affinity of the Torpedo nAChR for the three coccinellines tested. High concentrations of the coccinellid alkaloids did not affect binding of [3H]-cytisine to Torpedo receptor ACh binding sites. Inhibition of the alpha7 nAChR with pre-equilibrated precoccinelline was insurmountable with respect to ACh concentration. We conclude that the coccinellines bind to one or more allosteric sites rather than to the ACh binding sites, and inhibit nAChR responses to ACh through a non-competitive mechanism. Future chemical and pharmacological investigations of other ladybird beetle alkaloids are likely to reveal other interesting alkaloids affecting ligand-gated receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

CCh:

Carbamylcholine

nAChR:

Nicotinic acetylcholine receptor

NCA:

Non-competitive antagonist

[3H]-TCP:

[Piperidyl-3,4-3H(N)]-N-(1-(2-thienyl)cyclohexyl)-3,4-piperidine

References

  1. Rose JE, Behm FM, Westman EC (2001) Acute effects of nicotine and mecamylamine on tobacco withdrawal symptoms, cigarette reward and ad lib smoking. Pharmacol Biochem Behav 68:187–197

    Article  CAS  PubMed  Google Scholar 

  2. Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170

    Article  CAS  PubMed  Google Scholar 

  3. Arias HR (2009) Is the inhibition of nicotinic acetylcholine receptors by bupropion involved in its clinical actions? Intern J Biochem Cell Biol 41:2098–2108

    Article  CAS  Google Scholar 

  4. Arias HR, Trudell JR, Kem WR, Blanton MP (2002) Unique general anesthetic binding sites within conformational states of the nicotinic acetylcholine receptor. Intern J Neurobiol 54:1–50

    Article  Google Scholar 

  5. Aronstam RS, Edwards MW, Daly JW, Albuquerque EX (1988) Interactions of piperidine derivatives with the nicotinic cholinergic receptor complex from Torpedo electric organ. Neurochem Res 13:171–176

    Article  CAS  PubMed  Google Scholar 

  6. Braekman JC, Daloze D, Pasteels JM, Van Hecke P, Declercq JP, Sinnwell V, Francke W (1987) Tetraponerine-8, an alkaloidal contact poison in a Neoguinean pseudomyrmecine ant, Tetraponera sp. Z Naturforsch 42C:627–630

    Google Scholar 

  7. Kem WR, Wildeboer K, LeFrancois S, Raja M, Marzalec W, Braekman J-C (2004) Nicotinic receptor inhibition by Tetraponera ant alkaloids. Cell Mol Neurobiol 24:535–551

    Article  CAS  PubMed  Google Scholar 

  8. Rouchaud A, Braekman J-C (2009) Synthesis of new analogues of the tetraponerines. Eur J Org Chem 2009:2666–2674

    Article  Google Scholar 

  9. Abramson SN, Culver P, Kline T, Li Y, Guest P, Gutman L, Taylor P (1988) Lophotoxin and related coral toxins covalently label the alpha subunit of the nicotinic acetylcholine receptor. J Biol Chem 263:18568–18573

    CAS  PubMed  Google Scholar 

  10. Ferchmin PA, Pagan OR, Ulrich H, Szeto AC, Hann RM, Eterovic VA (2009) Actions of octacoral and tobacco cembranoids on nicotinic receptors. Toxicon 54:1174–1182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Aronstam RS, King CT, Albuquerque EX, Daly JW, Feigl DM (1985) Binding of [3H]perhydrohistrionicotoxin and [3H]phencyclidine to the nicotinc receptor-ion channel complex of Torpedo electroplax. Biochem Pharmacol 34:3037–3047

    Article  CAS  PubMed  Google Scholar 

  12. Daly JW, Nishizawa Y, Padgett WL, Tokuyama T, McCloskey PJ, Waykole L, Schultz AG, Aronstam RS (1991) Decahydroquinoline alkaloids: noncompetitive blockers for nicotinic acetylcholine receptor-channels in pheochromocytoma cells and Torpedo electroplax. Neurochem Res 16:1207–1212

    Article  CAS  PubMed  Google Scholar 

  13. Tursch B, Daloze D, DuPont M, Pasteels JM, Tricot M-C (1971) A defense alkaloid in a carnivorous beetle. Experientia 27:1381–1382

    Article  Google Scholar 

  14. Tursch B, Braekman JC, Daloze D (1976) Arthropod alkaloids. Experientia 32:401–407

    Article  CAS  Google Scholar 

  15. Timmermans M, Braekman J-C, Daloze D, Pasteels JM, Merlin J, Declercq J-P (1992) Exochomine, a dimeric ladybird alkaloid, isolated from Exochomus quadripustulatus (Coleoptera: Coccinellidae). Tetrahedron Lett 33:1281–1284

    Article  CAS  Google Scholar 

  16. King AG, Meinwald J (1996) Review of the defensive chemistry of coccinellids. Chem Rev 96:1105–1122

    Article  CAS  Google Scholar 

  17. Giogi W, Vandenberg N (2014) Coccinellidae (lady beetles, ladybird beetles, ladybugs. Tree of life web project. http://tol.web.org

  18. Lebrun B, Braekman JC, Daloze D (1999) Complete assignment of the 1H and 13C NMR spectra of the coccinellidae-defensive alkaloids myrrhine, precocccinelline and hippodamine, their N-oxides and the corresponding hydrochlorides. Magn Res Chem 37:60–64

    Article  CAS  Google Scholar 

  19. Ayer WA, Furuichi K (1976) The total synthesis of coccinelline and precoccinelline. Can J Chem 54:1494–1495

    Article  CAS  Google Scholar 

  20. Ayer WA, Dawe R, Eisner RA, Furuichi K (1976) A total synthesis of myrrhine, (±)-hippodamine, and (±)- convergine. Can J Chem 54:473–481

    Article  CAS  Google Scholar 

  21. Stevens RV, Lee AWM (1979) On the stereochemistry of the Robinson-Schopf reaction. A stereospecific total synthesis of the ladybug defense alkaloids precoccinelline and coccinelline. J Am Chem Soc 102:7032–7035

    Article  Google Scholar 

  22. Mueller RH, Thompson ME, DiPardo RM (1984) Stereo- and regioselective total syntheses of the hydropyridyl[2,1,6-de]quinolizine ladybug defensive alkaloids. J Org Chem 49:2217–2231

    Article  CAS  Google Scholar 

  23. Gerasyuto AI, Hsung RR (2006) Stereodivergent total syntheses of precoccinelline, hippodamine, coccinelline, and convergine. Org Lett 8:4899–4902

    Article  CAS  PubMed  Google Scholar 

  24. Laurent R, Braekman J-C, Daloze D, Pasteels JM (2002) In vitro production of adaline and coccinelline, two defensive alkaloids from ladybird beetles (coleoptera: coccinellidae). Insect Biochem Mol Biol 32:1017–1023

    Article  CAS  PubMed  Google Scholar 

  25. Arias HR, Xing H, MacDougall KMP, Blanton MP, Soti F, Kem WR (2009) Interaction of DMXBA (GTS-21) and its primary metabolite with agonist and allosteric sites on muscle nicotinic acetylcholine receptors. Brit J Pharmacol 157:320–330 [PMCID:2697798]

    Article  CAS  Google Scholar 

  26. Eldefrawi ME, Eldefrawi AT, Aronstam RS, Maleque MA, Warnick JE, Albuquerque EX (1980) [3H]Phencyclidine: a probe for the ionic channel of the nicotinic receptor. Proc Natl Acad Sci USA 77:7458–7462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Katz EJ, Cortes VI, Eldefrawi E, Eldefrawi AT (1997) Chorpyrifos, parathion, and their oxons bind to and desensitize a nicotinic acetylcholine receptor: relevance to their toxicities. Toxicol Appl Pharmacol 146:227–236

    Article  CAS  PubMed  Google Scholar 

  28. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  29. Kem WR, Mahnir VM, Prokai L, Papke RM, Cao XF, LeFrancois S, Wildeboer K, Porter Papke J, Prokai-Tatrai K, Soti F (2004) Hydroxy metabolites of the Alzheimer’s drug candidate DMXBA (GTS-21): their interactions with brain nicotinic receptors, and brain penetration. Mol Pharmacol 65:56–67

    Article  CAS  PubMed  Google Scholar 

  30. Arias H, De Rosa MJ, Berge I, Feuerbach D, Bouzat C (2013) Differential pharmacological activity of JN403 between alpha7 and muscle nicotinic acetylcholine receptors. Biochemistry 52:8480–8488

    Article  CAS  PubMed  Google Scholar 

  31. Johnson CD, Jones RAY, Katritzky AR, Palmer CR, Schofield K, Wells RJ (1965) A re-examination of the stereochemistry of quinolizidine and the methylquinolizidines through measurement of their rate of quaternisation and those of the hexahydrojulolidines. J Chem Soc 1965:6797–6806

    Article  Google Scholar 

  32. Zhorov BS, Brovtsyna NB, Gmiro VE, Lukomskaya NY, Serdyuk SE, Popapyeva NN, Magazanik LG, Kurenniy DE, Skok VI (1991) Dimensions of the ion channel in neuronal nicotinic acetylcholine receptor as estimated from analysis of conformation-activity relationships of open-channel blocking drugs. J Membr Biol 121:119–132

    Article  CAS  PubMed  Google Scholar 

  33. Sankararamakrishnan R, Adcock C, Sanson MSP (1996) The pore domain of the nicotinic acetylcholine receptor: molecular modeling, pore dimensions, and electrostatics. Biophys J 71:1659–1671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Papke RL, Burh JD, Francis MM, Choi KI, Thinschmidt JS, Horenstein NA (2005) The effects of subunit composition on the inhibition of nicotinic receptors by the amphipathic blocker 2,2,6,6-tetramethylpiperidin-4-yl heptanoate. Mol Pharmacol 67:1977–1990

    Article  CAS  PubMed  Google Scholar 

  35. Tsuneki H, You Y, Toyooka N, Kagawa S, Kobayashi S, Sasaoka T, Nemoto H, Kimura I, Dani JA (2004) Alkaloids indolizidine 235B′, quinolizidine 1-epi-20171, and the tricyclic 205B are potent and selective noncompetitive inhibitors of nicotinic acetylcholine receptors. Mol Pharmacol 66:1061–1069l

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Kem.

Additional information

Ron L. Leong and Hong Xing have contributed equally to this study.

Special Issue: In Honor of Lynn Wecker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, R.L., Xing, H., Braekman, JC. et al. Non-competitive Inhibition of Nicotinic Acetylcholine Receptors by Ladybird Beetle Alkaloids. Neurochem Res 40, 2078–2086 (2015). https://doi.org/10.1007/s11064-014-1466-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1466-0

Keywords

Navigation