Skip to main content

Advertisement

Log in

Cortical Spreading Depression Increases the Phosphorylation of AMP-Activated Protein Kinase in the Cerebral Cortex

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cortical spreading depression (CSD) enhances ischemic tolerance to temporary focal ischemia. Although this effect most likely requires the expression or activation of neuroprotective factors, their identity remains relatively unknown. One important factor involved in neuroprotection is adenosine monophosphate-dependent kinase (AMPK), a serine/threonine kinase that is activated via phosphorylation. This activation occurs in response to brain ischemia, hypoxia, or glucose deprivation. Thus, to determine the potential mechanism of the neuroprotective effects of CSD, we tested whether AMPK becomes phosphorylated into phospho-AMP-activated protein kinase (pAMPK) after CSD. CSD was induced for 15 min in three groups of five rats. The animals were subsequently sacrificed after 2, 4 or 24 h. Western blot analyses were performed to determine the AMPKα and pAMPKα levels in the cortex (right and left hemispheres), and immunohistochemistry and immunofluorescence were performed to determine the localisation of AMPKα and pAMPKα in the cerebral cortex. These results demonstrated a significant increase in pAMPKα at 24 h (but not at 2 and 4 h) after CSD. In contrast, un-phosphorylated AMPK expression did not change. The increase in pAMPKα was confined to neurons (predominantly neurons located in the superficial layers of the cerebral cortex) and was not observed in astroglial cells. Taken together, these data indicate that AMPK is activated by CSD, and suggest that this activation may contribute to the neuroprotective effect of CSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leo AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:359–390

    Google Scholar 

  2. Gorji A (2001) Spreading depression: a review of the clinical relevance. Brain Res Brain Res Rev 38:33–60

    Article  CAS  PubMed  Google Scholar 

  3. Bures J (1954) Direct potential difference between the cerebral hemispheres during the depression of EEG activity in anaesthetised and non-anaesthetised rats. Chekh Fiziol 3:288–295

    CAS  PubMed  Google Scholar 

  4. Lauritzen M, Dreier JP, Fabricius M et al (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31:17–35. doi:10.1038/jcbfm.2010.191

    Article  PubMed Central  PubMed  Google Scholar 

  5. Lauritzen M (2001) Cortical spreading depression in migraine. Cephalalgia 21:757–760

    Article  CAS  PubMed  Google Scholar 

  6. Fabricius M, Fuhr S, Bhatia R et al (2006) Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain 129:778–790. doi:10.1093/brain/awh716

    Article  PubMed  Google Scholar 

  7. Nedergaard M (1988) Mechanisms of brain damage in focal cerebral ischemia. Acta Neurol Scand 77:81–101

    Article  CAS  PubMed  Google Scholar 

  8. Nedergaard M, Hansen AJ (1993) Characterization of cortical depolarizations evoked in focal cerebral ischemia. J Cereb Blood Flow Metab 13:568–574. doi:10.1038/jcbfm.1993.74

    Article  CAS  PubMed  Google Scholar 

  9. Sunami K, Nakamura T, Kubota M et al (1989) Spreading depression following experimental head injury in the rat. Neurol Med Chir (Tokyo) 29:975–980

    Article  CAS  Google Scholar 

  10. Strong AJ, Fabricius M, Boutelle MG et al (2002) Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33:2738–2743

    Article  PubMed  Google Scholar 

  11. Dreier JP, Major S, Pannek H-W et al (2012) Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain 135:259–275. doi:10.1093/brain/awr303

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kawahara N, Ruetzler CA, Klatzo I (1995) Protective effect of spreading depression against neuronal damage following cardiac arrest cerebral ischaemia. Neurol Res 17:9–16

    CAS  PubMed  Google Scholar 

  13. Kobayashi S, Harris VA, Welsh FA (1995) Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 15:721–727. doi:10.1038/jcbfm.1995.93

    Article  CAS  PubMed  Google Scholar 

  14. Yanamoto H, Xue J-H, Miyamoto S et al (2004) Spreading depression induces long-lasting brain protection against infarcted lesion development via BDNF gene-dependent mechanism. Brain Res 1019:178–188. doi:10.1016/j.brainres.2004.05.105

    Article  CAS  PubMed  Google Scholar 

  15. Matsushima K, Schmidt-Kastner R, Hogan MJ, Hakim AM (1998) Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res 807:47–60

    Article  CAS  PubMed  Google Scholar 

  16. Taga K, Patel PM, Drummond JC et al (1997) Transient neuronal depolarization induces tolerance to subsequent forebrain ischemia in rats. Anesthesiology 87:918–925

    Article  CAS  PubMed  Google Scholar 

  17. Otori T, Greenberg JH, Welsh FA (2003) Cortical spreading depression causes a long-lasting decrease in cerebral blood flow and induces tolerance to permanent focal ischemia in rat brain. J Cereb Blood Flow Metab 23:43–50

    Article  PubMed  Google Scholar 

  18. Yanamoto H, Mizuta I, Nagata I et al (2000) Infarct tolerance accompanied enhanced BDNF—ike immunoreactivity in neuronal nuclei. Brain Res 877:331–344

    Article  CAS  PubMed  Google Scholar 

  19. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247. doi:10.1152/physrev.00039.2006

    Article  CAS  PubMed  Google Scholar 

  20. Passaro D, Rana G, Piscopo M et al (2010) Epigenetic chromatin modifications in the cortical spreading depression. Brain Res 1329:1–9. doi:10.1016/j.brainres.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  21. Rana G, Donizetti A, Virelli G et al (2012) Cortical spreading depression differentially affects lysine methylation of H3 histone at neuroprotective genes and retrotransposon sequences. Brain Res 1467:113–119. doi:10.1016/j.brainres.2012.05.043

    Article  CAS  PubMed  Google Scholar 

  22. Viggiano E, Ferrara D, Izzo G et al (2008) Cortical spreading depression induces the expression of iNOS, HIF-1alpha, and LDH-A. Neuroscience 153:182–188. doi:10.1016/j.neuroscience.2008.01.037

    Article  CAS  PubMed  Google Scholar 

  23. Chow AK, Thompson CS, Hogan MJ et al (2002) Cortical spreading depression transiently activates MAP kinases. Brain Res Mol Brain Res 99:75–81

    Article  CAS  PubMed  Google Scholar 

  24. Plumier JC, David JC, Robertson HA, Currie RW (1997) Cortical application of potassium chloride induces the low-molecular weight heat shock protein (Hsp27) in astrocytes. J Cereb Blood Flow Metab 17:781–790. doi:10.1097/00004647-199707000-00008

    Article  CAS  PubMed  Google Scholar 

  25. Urbach A, Bruehl C, Witte OW (2006) Microarray-based long-term detection of genes differentially expressed after cortical spreading depression. Eur J Neurosci 24:841–856. doi:10.1111/j.1460-9568.2006.04862.x

    Article  PubMed  Google Scholar 

  26. Koistinaho J, Pasonen S, Yrjänheikki J, Chan PH (1999) Spreading depression-induced gene expression is regulated by plasma glucose. Stroke 30:114–119

    Article  CAS  PubMed  Google Scholar 

  27. Thompson CS, Hakim AM (2005) Cortical spreading depression modifies components of the inflammatory cascade. Mol Neurobiol 32:51–57. doi:10.1385/MN:32:1:051

    Article  CAS  PubMed  Google Scholar 

  28. Chen EY, Tan CM, Kou Y et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128. doi:10.1186/1471-2105-14-128

    Article  Google Scholar 

  29. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Carbon S, Ireland A, Mungall CJ et al (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289. doi:10.1093/bioinformatics/btn615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Turnley AM, Stapleton D, Mann RJ et al (1999) Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem 72:1707–1716

    Article  CAS  PubMed  Google Scholar 

  32. Woods A, Vertommen D, Neumann D et al (2003) Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 278:28434–28442. doi:10.1074/jbc.M303946200

    Article  CAS  PubMed  Google Scholar 

  33. Xue B, Kahn BB (2006) AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol (Lond) 574:73–83. doi:10.1113/jphysiol.2006.113217

    Article  CAS  Google Scholar 

  34. Culmsee C, Monnig J, Kemp BE, Mattson MP (2001) AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci 17:45–58. doi:10.1385/JMN:17:1:45

    Article  CAS  PubMed  Google Scholar 

  35. Kuramoto N, Wilkins ME, Fairfax BP et al (2007) Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase. Neuron 53:233–247. doi:10.1016/j.neuron.2006.12.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Berry GT, Nissim I, Lin Z et al (1995) Endogenous synthesis of galactose in normal men and patients with hereditary galactosaemia. Lancet 346:1073–1074

    Article  CAS  PubMed  Google Scholar 

  37. Gold L, Back T, Arnold G et al (1998) Cortical spreading depression-associated hyperemia in rats: involvement of serotonin. Brain Res 783:188–193

    Article  CAS  PubMed  Google Scholar 

  38. Marsin A-S, Bouzin C, Bertrand L, Hue L (2002) The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem 277:30778–30783. doi:10.1074/jbc.M205213200

    Article  CAS  PubMed  Google Scholar 

  39. Snider BJ, Gottron FJ, Choi DW (1999) Apoptosis and necrosis in cerebrovascular disease. Ann NY Acad Sci 893:243–253

    Article  CAS  PubMed  Google Scholar 

  40. Hardie DG, Pan DA (2002) Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30:1064–1070. doi:10.1042/bst0301064

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Gil M, Pesi R, Perna S et al (2003) 5′-Aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience 117:811–820

    Article  CAS  PubMed  Google Scholar 

  42. Pesi R, Micheli V, Jacomelli G et al (2000) Cytosolic 5′-nucleotidase hyperactivity in erythrocytes of Lesch–Nyhan syndrome patients. NeuroReport 11:1827–1831

    Article  CAS  PubMed  Google Scholar 

  43. McCullough LD, Zeng Z, Li H et al (2005) Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 280:20493–20502. doi:10.1074/jbc.M409985200

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Zeng Z, Viollet B et al (2007) Neuroprotective effects of adenosine monophosphate-activated protein kinase inhibition and gene deletion in stroke. Stroke 38:2992–2999. doi:10.1161/STROKEAHA.107.490904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Bures J, Buresova O (1962) Spreading depression as a research instrument in neurophysiology. Actual Neurophysiol (Paris) 4:107–124

    CAS  Google Scholar 

  46. Ichijo M, Ochs S (1970) Spreading depression of negative wave of direct cortical response and pyramidal tract responses. Brain Res 23:41–56

    Article  CAS  PubMed  Google Scholar 

  47. Vingtdeux V, Giliberto L, Zhao H et al (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 285:9100–9113. doi:10.1074/jbc.M109.060061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gürer G, Gursoy-Ozdemir Y, Erdemli E et al (2009) Astrocytes are more resistant to focal cerebral ischemia than neurons and die by a delayed necrosis. Brain Pathol 19:630–641. doi:10.1111/j.1750-3639.2008.00226.x

    Article  PubMed  Google Scholar 

  49. Schmuck G, Röhrdanz E, Tran-Thi Q-H et al (2002) Oxidative stress in rat cortical neurons and astrocytes induced by paraquat in vitro. Neurotox Res 4:1–13. doi:10.1080/10298420290007574

    Article  CAS  PubMed  Google Scholar 

  50. Almeida A, Delgado-Esteban M, Bolaños JP, Medina JM (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 81:207–217

    Article  CAS  PubMed  Google Scholar 

  51. Lukaszevicz A-C, Sampaïo N, Guégan C et al (2002) High sensitivity of protoplasmic cortical astroglia to focal ischemia. J Cereb Blood Flow Metab 22:289–298. doi:10.1097/00004647-200203000-00006

    Article  CAS  PubMed  Google Scholar 

  52. Giffard RG, Monyer H, Choi DW (1990) Selective vulnerability of cultured cortical glia to injury by extracellular acidosis. Brain Res 530:138–141

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Viggiano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viggiano, E., Viggiano, D., Viggiano, A. et al. Cortical Spreading Depression Increases the Phosphorylation of AMP-Activated Protein Kinase in the Cerebral Cortex. Neurochem Res 39, 2431–2439 (2014). https://doi.org/10.1007/s11064-014-1447-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1447-3

Keywords

Navigation