Skip to main content

Advertisement

Log in

Calcium Dependent Interaction of Calmodulin with the GlyT1 C-terminus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The cytoplasmic regions of neurotransmitter transporters play an important role in their trafficking. This process is, to a high extent, tuned by calcium and calcium binding proteins, but the exact molecular connection are still not fully understood. In this work we found that the C-terminal region of the mouse glycine transporter GlyT1b is able to specifically interact with calmodulin in the presence of calcium. We found that several GlyT1 C-terminal mutations, including those in the ER retention signal, either eliminate or increase calmodulin interaction in vitro. In tissue-culture-expressed GlyT1 at least two of these mutations altered the sensitivity of GlyT1 surface expression and glycine uptake to calmodulin antagonists. These results suggest the possible involvement of calmodulin or calmodulin-like interactions in the regulation of GlyT1C-mediated transporter trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Betz H (1992) Structure and function of inhibitory glycine receptors. Q Rev Biophys 25:381–394

    Article  PubMed  CAS  Google Scholar 

  2. Borowsky B, Mezey E, Hoffman BJ (1993) Two glycine transporter variants with distinct localization in the CNS and peripheral tissues are encoded by a common gene. Neuron 10:851–863

    Article  PubMed  CAS  Google Scholar 

  3. Liu QR, López-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Cloning and expression of a spinal cord- and brain-specific glycine transporter with novel structural features. J Biol Chem 268:22802–22808

    PubMed  CAS  Google Scholar 

  4. Zafra F, Aragón C, Olivares L, Danbolt NC, Giménez C, Storm-Mathisen J (1995) Glycine transporters are differentially expressed among CNS cells. J Neurosci 15:3952–3969

    PubMed  CAS  Google Scholar 

  5. Jursky F, Nelson N (1996) Developmental expression of the glycine transporters GLYT1 and GLYT2 in mouse brain. J Neurochem 67:336–344

    Article  PubMed  CAS  Google Scholar 

  6. Gomeza J, Hülsmann S, Ohno K, Eulenburg V, Szöke K, Richter D, Betz H (2003) Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 40:785–796

    Article  PubMed  CAS  Google Scholar 

  7. Gomeza J, Ohno K, Hülsmann S, Armsen W, Eulenburg V, Richter DW, Laube B, Betz H (2003) Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 40:797–806

    Article  PubMed  CAS  Google Scholar 

  8. Smith KE, Borden LA, Hartig PR, Branchek T, Weinshank RL (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron 8:927–935

    Article  PubMed  CAS  Google Scholar 

  9. Supplisson S, Bergman C (1997) Control of NMDA receptor activation by a glycine transporter co-expressed in Xenopus oocytes. J Neurosci 17:4580–4590

    PubMed  CAS  Google Scholar 

  10. Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 95:15730–15734

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Cubelos B, Giménez C, Zafra F (2005) Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex 15:448–459

    Article  PubMed  Google Scholar 

  12. Eulenburg V, Becker K, Gomeza J, Schmitt B, Becker CM, Betz H (2006) Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochem Biophys Res Commun 348:400–405

    Article  PubMed  CAS  Google Scholar 

  13. Rees MI, Harvey K, Pearce BR, Chung SK, Duguid IC, Thomas P, Beatty S, Graham GE, Armstrong L, Shiang R, Abbott KJ, Zuberi SM, Stephenson JB, Owen MJ, Tijssen MA, van den Maagdenberg AM, Smart TG, Supplisson S, Harvey RJ (2006) Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet 38:801–806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Harvey RJ, Yee BK (2013) Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov 12:866–885

    Article  PubMed  CAS  Google Scholar 

  15. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na1/Cl2-dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  16. Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85–90

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Kim KM, Kingsmore SF, Han H, Yang-Feng TL, Godinot N, Seldin MF, Caron MG, Giros B (1994) Cloning of the human glycine transporter type 1: molecular and pharmacological characterization of novel isoform variants and chromosomal localization of the gene in the human and mouse genomes. Mol Pharmacol 45:608–617

    PubMed  CAS  Google Scholar 

  18. Ponce J, Poyatos I, Aragón C, Giménez C, Zafra F (1998) Characterization of the 5- region of the rat brain glycine transporter GLYT2 gene: identification of a novel isoform. Neurosci Lett 242:25–28

    Article  PubMed  CAS  Google Scholar 

  19. Ebihara S, Yamamoto T, Obata K, Yanagawa Y (2004) Gene structure and alternative splicing of the mouse glycine transporter type-2. Biochem Biophys Res Commun 317:857–864

    Article  PubMed  CAS  Google Scholar 

  20. Mabjeesh NJ, Kanner BI (1992) Neither amino nor carboxyl termini are required for function of the sodium- and chloride-coupled gamma-aminobutyric acid transporter from rat brain. J Biol Chem 267:2563–2568

    PubMed  CAS  Google Scholar 

  21. Olivares L, Aragón C, Giménez C, Zafra F (1994) Carboxy terminus of the glycine transporter GlyT1 is necessary for processing of the protein. J Biol Chem 269:28400–28404

    PubMed  CAS  Google Scholar 

  22. Olivares L, Aragón C, Giménez C, Zafra F (1995) The role of N-glycosylation in the targeting and activity of the GlyT1 glycin transporter. J Biol Chem 270:9437–9442

    Article  PubMed  CAS  Google Scholar 

  23. Bjerggaard C, Fog JU, Hastrup H, Madsen K, Loland CJ, Javitch JA, Gether U (2004) Surface targeting of the dopamine transporter involves discrete epitopes in the distal C terminus but does not require canonical PDZ domain interactions. J Neurosci 24:7024–7036

    Article  PubMed  CAS  Google Scholar 

  24. Farhan H, Korkhov VM, Paulitschke V, Dorostkar MM, Scholze P, Kudlacek O, Freissmuth M, Sitte HH (2004) Two discontinuous segments in the carboxyl terminus are required for membrane targeting of the rat gamma-aminobutyric acid transporter-1 (GAT1). J Biol Chem 279:28553–28563

    Article  PubMed  CAS  Google Scholar 

  25. Miranda M, Sorkina T, Grammatopoulos TN, Zawada WM, Sorkin A (2004) Multiple molecular determinants in the carboxyl terminus regulate dopamine transporter export from endoplasmic reticulum. J Biol Chem 279:30760–30770

    Article  PubMed  CAS  Google Scholar 

  26. Cubelos B, Giménez C, Zafra F (2005) The glycine transporter GLYT1 interacts with Sec3, a component of the exocyst complex. Neuropharmacology 49:935–944

    Article  PubMed  CAS  Google Scholar 

  27. Fernández-Sánchez E, Díez-Guerra FJ, Cubelos B, Giménez C, Zafra F (2008) Mechanisms of endoplasmic-reticulum export of glycine transporter-1 (GLYT1). Biochem J 409:669–681

    Article  PubMed  Google Scholar 

  28. Fernández-Sánchez E, Martínez-Villarreal J, Giménez C, Zafra F (2009) Constitutive and regulated endocytosis of the glycine transporter GLYT1b is controlled by ubiquitination. J Biol Chem 284:19482–19492

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boudanova E, Navaroli DM, Stevens Z, Melikian HE (2008) Dopamine transporter endocytic determinants: carboxy terminal residues critical for basal and PKC-stimulated internalization. Mol Cell Neurosci 39:211–217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Jursky F, Baliova M (2013) Expression and purification of recombinant calpain-derived N-terminal peptides from glycine transporter GlyT2. Protein Expr Purif 88:143–149

    Article  PubMed  CAS  Google Scholar 

  31. Cubelos B, González-González IM, Giménez C, Zafra F (2005) The scaffolding protein PSD-95 interacts with the glycine transporter GLYT1 and impairs its internalization. J Neurochem 95:1047–1058

    Article  PubMed  CAS  Google Scholar 

  32. Farhan H, Reiterer V, Korkhov VM, Schmid JA, Freissmuth M, Sitte HH (2007) Concentrative export from the endoplasmic reticulum of the gamma-aminobutyric acid transporter 1 requires binding to SEC24D. J Biol Chem 282:7679–7689

    Article  PubMed  CAS  Google Scholar 

  33. Sato K, Adams R, Betz H, Schloss P (1995) Modulation of a recombinant glycine transporter (GLYT 1 b) by activation of protein kinase C. J Neurochem 65:1967–1973

    Article  PubMed  CAS  Google Scholar 

  34. Dipace C, Sung U, Binda F, Blakely RD, Galli A (2007) Amphetamine induces a calcium/calmodulin-dependent protein kinase II-dependent reduction in norepinephrine transporter surface expression linked to changes in syntaxin 1A/transporter complexes. Mol Pharmacol 71:230–239

    Article  PubMed  CAS  Google Scholar 

  35. Geerlings A, Núnez E, López-Corcuera B, Aragón C (2001) Calcium- and syntaxin 1-mediated trafficking of the neuronal glycine transporter GLYT2. J Biol Chem 276:17584–17590

    Article  PubMed  CAS  Google Scholar 

  36. Fog JU, Khoshbouei H, Holy M, Owens WA, Vaegter CB, Sen N, Nikandrova Y, Bowton E, McMahon DG, Colbran RJ, Daws LC, Sitte HH, Javitch JA, Galli A, Gether U (2006) Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51:417–429

    Article  PubMed  CAS  Google Scholar 

  37. El Far O, Bofill-Cardona E, Airas JM, O’Connor V, Boehm S, Freissmuth M, Nanoff C, Betz H (2001) Mapping of calmodulin and Gbetagamma binding domains within the C-terminal region of the metabotropic glutamate receptor 7A. J Biol Chem 276:30662–30669

    Article  PubMed  Google Scholar 

  38. Seimandi M, Seyer P, Park CS, Vandermoere F, Chanrion B, Bockaert J, Mansuy IM, Marin P (2013) Calcineurin interacts with the serotonin transporter C-terminus to modulate its plasma membrane expression and serotonin uptake. J Neurosci 33:16189–16199

    Article  PubMed  CAS  Google Scholar 

  39. Alaimo A, Gómez-Posada JC, Aivar P, Etxeberría A, Rodriguez-Alfaro JA, Areso P, Villarroel A (2009) Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem 284:20668–20675

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Hassdenteufel S, Schäuble N, Cassella P, Leznicki P, Müller A, High S, Jung M, Zimmermann R (2011) Ca(2+)-calmodulin inhibits tail-anchored protein insertion into the mammalian endoplasmic reticulum membrane. FEBS Lett 585:3485–3490

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Hall DD, Dai S, Tseng PY, Malik Z, Nguyen M, Matt L, Schnizler K, Shephard A, Mohapatra DP, Tsuruta F, Dolmetsch RE, Christel CJ, Lee A, Burette A, Weinberg RJ, Hell JW (2013) Competition between α-actinin and Ca2+ -calmodulin controls surface retention of the L-type Ca2+ channel Ca(V)1.2. Neuron 78:483–497

    Article  PubMed  CAS  Google Scholar 

  42. Baliova M, Jursky F (2010) Calcium dependent modification of distal C-terminal sequences of glycine transporter GlyT1. Neuroch Int 57:254–261

    Article  CAS  Google Scholar 

  43. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  44. Baliova M, Jursky F (2005) Calpain sensitive regions in the N-terminal cytoplasmic domains of glycine transporters GlyT1A and GlyT1B. Neurochem Res 30:1093–1100

    Article  PubMed  CAS  Google Scholar 

  45. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Elia G (2008) Biotinylation reagents for the study of cell surface proteins. Proteomics 8:4012–4024

    Article  PubMed  CAS  Google Scholar 

  47. Verbeeck RK, Cardinal JA, Hill AG, Midha KK (1983) Binding of phenothiazine neuroleptics to plasma proteins. Biochem Pharmacol 32:2565–2570

    Article  PubMed  CAS  Google Scholar 

  48. Nybo K (2012) GFP imaging in fixed cells. Biotechniques 52:359–360

    PubMed  CAS  Google Scholar 

  49. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWillam H, Valenti F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gipson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  50. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  51. Wang KK, Villalobo A, Roufogalis BD (1989) Calmodulin-binding proteins as calpain substrates. Biochem J 262:693–706

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Sengupta P, Ruano MJ, Tebar F, Golebiewska U, Zaitseva I, Enrich C, McLaughlin S, Villalobo A (2007) Membrane-permeable calmodulin inhibitors (e.g. W-7/W-13) bind to membranes, changing the electrostatic surface potential. J Biol Chem 282:8474–8486

    Article  PubMed  CAS  Google Scholar 

  53. Arazi T, Baum G, Snedden WA, Shelp BJ, Fromm H (1995) Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiol 108:551–561

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. O’Neil KT, DeGrado WF (1990) How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci 15:59–64

    Article  PubMed  Google Scholar 

  55. Gadea A, López E, Hernández-Cruz A, López-Colomé AM (2002) Role of Ca2+ and calmodulin-dependent enzymes in the regulation of glycine transport in Müller glia. J Neurochem 80:634–645

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Grant agency VEGA, Grants 2/0084/13 and 2/0086/13. We thank Dr. G. Bukovska for the access to fluorescent microscope and Dr. J. Bauer for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frantisek Jursky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihalikova, A., Baliova, M. & Jursky, F. Calcium Dependent Interaction of Calmodulin with the GlyT1 C-terminus. Neurochem Res 39, 2225–2233 (2014). https://doi.org/10.1007/s11064-014-1424-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1424-x

Keywords

Navigation