Skip to main content

Advertisement

Log in

Protective Effects of Humanin on Okadaic Acid-Induced Neurotoxicities in Cultured Cortical Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurofibrillary tangles are pathological hallmarks of Alzheimer’s disease (AD), which are mostly composed of hyperphosphorylated tau and directly correlate with dementia in AD patients. Okadaic acid (OA), a toxin extracted from marine life, can specifically inhibit protein phosphatases (PPs), including PP1 and Protein phosphatase 2A (PP2A), resulting in tau hyperphosphorylation. Humanin (HN), a peptide of 24 amino acids, was initially reported to protect neurons from AD-related cell toxicities. The present study was designed to test if HN could attenuate OA-induced neurotoxicities, including neural insults, apoptosis, autophagy, and tau hyperphosphorylation. We found that administration of OA for 24 h induced neuronal insults, including lactate dehydrogenase released, decreased of cell viability and numbers of living cells, neuronal apoptosis, cells autophagy and tau protein hyperphosphorylation. Pretreatment of cells with HN produced significant protective effects against OA-induced neural insults, apoptosis, autophagy and tau hyperphosphorylation. We also found that OA treatment inhibited PP2A activity and HN pretreatment significantly attenuated the inhibitory effects of OA. This study demonstrated for the first time that HN protected cortical neurons against OA-induced neurotoxicities, including neuronal insults, apoptosis, autophagy, and tau hyperphosphorylation. The mechanisms underlying the protections of HN may involve restoration of PP2A activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

NFTs:

Neurofibrillary tangles

PHF:

Paired helical filaments

Aβ:

Amyloid-β

AVs:

Autophagic vacuoles

PPs:

Protein phosphatases

PP2A:

Protein phosphatase 2A

OA:

Okadaic acid

HN:

Humanin

UP:

Unrelated peptide

LDH:

Lactate dehydrogenase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Ac-DEVD-pNA:

Acetyl-Asp-Glu-Val-Asp p-nitroaniline

TUNEL:

Terminal-deoxynucleoitidyl transferase mediated nick end labeling

References

  1. Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60:139–165

    Article  PubMed  CAS  Google Scholar 

  2. Devred F, Barbier P, Douillard S, Monasterio O, Andreu JM, Peyrot V (2004) Tau induces ring and microtubule formation from alphabeta-tubulin dimers under nonassembly conditions. Biochemistry 43:10520–10531

    Article  PubMed  CAS  Google Scholar 

  3. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Del Barrio L, Martín-de-Saavedra MD, Romero A, Parada E, Egea J, Avila J, McIntosh JM, Wonnacott S, López MG (2011) Neurotoxicity induced by okadaic acid in the human neuroblastoma SH-SY5Y line can be differentially prevented by α7 and β2* nicotinic stimulation. Toxicol Sci 123:193–205

    Article  PubMed  Google Scholar 

  5. Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K (2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J Biol Chem 275:5535–5544

    Article  PubMed  CAS  Google Scholar 

  6. Arendt T, Holzer M, Brückner MK, Janke C, Gärtner U (1998) The use of okadaic acid in vivo and the induction of molecular changes typical for Alzheimer’s disease. Neuroscience 85:1337–1340

    Article  PubMed  CAS  Google Scholar 

  7. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2006) Dysregulation of protein phosphorylation/dephosphorylation in Alzheimer’s disease: a therapeutic target. J Biomed Biotechnol 2006:31825

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang Z, Simpkins JW (2010) An okadaic acid-induced model of tauopathy and cognitive deficiency. Brain Res 1359:233–246

    Article  PubMed  CAS  Google Scholar 

  9. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22:1942–1950

    Article  PubMed  Google Scholar 

  10. Liu GP, Zhang Y, Yao XQ, Zhang CE, Fang J, Wang Q, Wang JZ (2008) Activation of glycogen synthase kinase-3 inhibits protein phosphatase-2A and the underlying mechanisms. Neurobiol Aging 29:1348–1358

    Article  PubMed  CAS  Google Scholar 

  11. Zhang CE, Tian Q, Wei W, Peng JH, Liu GP, Zhou XW, Wang Q, Wang DW, Wang JZ (2008) Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol Aging 29:1654–1665

    Article  PubMed  CAS  Google Scholar 

  12. Cirak Y, Varol U, Atmaca H, Kisim A, Sezgin C, Karabulut B, Uzunoglu S, Uslu R, Karaca B (2012) Zoledronic acid in combination with serine/threonine phosphatase inhibitors induces enhanced cytotoxicity and apoptosis in hormone-refractory prostate cancer cell lines by decreasing the activities of PP1 and PP2A. BJU Int 110:E1147–E1154

    Article  PubMed  CAS  Google Scholar 

  13. Sontag E, Luangpirom A, Hladik C, Mudrak I, Ogris E, Speciale S, White CL 3rd (2004) Altered expression levels of the protein phosphatase 2A ABalphaC enzyme are associated with Alzheimer disease pathology. J Neuropathol Exp Neurol 63:287–301

    PubMed  CAS  Google Scholar 

  14. Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ, Lee VM (2001) PP2A mRNA expression is quantitatively decreased in Alzheimer’s disease hippocampus. Exp Neurol 168:402–412

    Article  PubMed  CAS  Google Scholar 

  15. Zhao ST, Huang XT, Zhang C, Ke Y (2012) Humanin protects cortical neurons from ischemia and reperfusion injury by the increased activity of superoxide dismutase. Neurochem Res 37:153–160

    Article  PubMed  CAS  Google Scholar 

  16. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immunoelectron microscopy study. J Neuropathol Exp Neurol 64:113–122

    PubMed  Google Scholar 

  17. Yoon SY, Choi JE, Kweon HS, Choe H, Kim SW, Hwang O, Lee H, Lee JY, Kim DH (2008) Okadaic acid increases autophagosomes in rat neurons: implications for Alzheimer’s disease. J Neurosci Res 86:3230–3239

    Article  PubMed  CAS  Google Scholar 

  18. Ułamek-Kozioł M, Furmaga-Jabłońska W, Januszewski S, Brzozowska J, Sciślewska M, Jabłoński M, Pluta R (2013) Neuronal autophagy: self-eating or self-cannibalism in Alzheimer’s disease. Neurochem Res 38:1769–1773

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Zhang J, Cai T, Zhao F, Yao T, Chen Y, Liu X, Luo W, Chen J (2012) The role of α-synuclein and tau hyperphosphorylation-mediated autophagy and apoptosis in lead-induced learning and memory injury. Int J Biol Sci 8:935–944

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Rosenfeldt MT, Ryan KM (2009) The role of autophagy in tumour development and cancer therapy. Expert Rev Mol Med 11:e36

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reggiori F, Klionsky DJ (2005) Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 17:415–422

    Article  PubMed  CAS  Google Scholar 

  23. Sridhar S, Botbol Y, Macian F, Cuervo AM (2012) Autophagy and disease: always two sides to a problem. J Pathol 226:255–273

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sadasivan S, Zhang Z, Larner SF, Liu MC, Zheng W, Kobeissy FH, Hayes RL, Wang KK (2010) Acute NMDA toxicity in cultured rat cerebellar granule neurons is accompanied by autophagy induction and late onset autophagic cell death phenotype. BMC Neurosci 11:21

    Article  PubMed  PubMed Central  Google Scholar 

  25. Niikura T, Hashimoto Y, Tajima H, Nishimoto I (2002) Death and survival of neuronal cells exposed to Alzheimer’s insults. J Neurosci Res 70:380–391

    Article  PubMed  CAS  Google Scholar 

  26. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA 98:6336–6341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Zapała B, Kaczyński Ł, Kieć-Wilk B, Staszel T, Knapp A, Thoresen GH, Wybrańska I, Dembińska-Kieć A (2010) Humanins, the neuroprotective and cytoprotective peptides with antiapoptotic and anti-inflammatory properties. Pharmacol Rep 62:767–777

    Article  PubMed  Google Scholar 

  28. Zhang X, Urbieta-Caceres VH, Eirin A, Bell CC, Crane JA, Tang H, Jordan KL, Oh YK, Zhu XY, Korsmo MJ, Bachar AR, Cohen P, Lerman A, Lerman LO (2012) Humanin prevents intra-renal microvascular remodeling and inflammation in hypercholesterolemic ApoE deficient mice. Life Sci 91:199–206

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kwon KJ, Kim HJ, Shin CY, Han SH (2010) Melatonin potentiates the neuroprotective properties of resveratrol against beta-amyloid-induced neurodegeneration by modulating Amp-activated protein kinase pathways. J Clin Neurol 6:127–137

    Article  PubMed  PubMed Central  Google Scholar 

  30. Amadoro G, Corsetti V, Ciotti MT, Florenzano F, Capsoni S, Amato G, Calissano P (2011) Endogenous Aβ causes cell death via early tau hyperphosphorylation. Neurobiol Aging 32:969–990

    Article  PubMed  CAS  Google Scholar 

  31. Guise S, Braguer D, Remacle-Bonnet M, Pommier G, Briand C (1999) Tau protein is involved in the apoptotic process induced by anti-microtubule agents on neuroblastoma cells. Apoptosis 4:47–58

    Article  PubMed  CAS  Google Scholar 

  32. Li X, Zhang X, Yuan H, Quan Q (2010) Experimental research on effect of gensenoside Rg1 on expressions of P-Tau and caspase-3 in brain slices from AD model rats. Zhongguo Zhong Yao Za Zhi 35:369–372

    PubMed  CAS  Google Scholar 

  33. Furukawa K, D’Souza I, Crudder CH, Onodera H, Itoyama Y, Poorkaj P, Bird TD, Schellenberg GD (2000) Pro-apoptotic effects of tau mutations in chromosome 17 frontotemporal dementia and parkinsonism. NeuroReport 11:57–60

    Article  PubMed  CAS  Google Scholar 

  34. Hung KS, Hwang SL, Liang CL, Chen YJ, Lee TH, Liu JK, Howng SL, Wang CH (2005) Calpain inhibitor inhibits p35-p25-Cdk5 activation, decreases tau hyperphosphorylation, and improves neurological function after spinal cord hemisection in rats. J Neuropathol Exp Neurol 64:15–26

    PubMed  CAS  Google Scholar 

  35. Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA, Yu WH, Duff KE (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8:609–622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Krüger U, Wang Y, Kumar S, Mandelkow EM (2011) Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 33:2291–2305

    Article  PubMed  Google Scholar 

  37. Pei JJ, Gong CX, An WL, Winblad B, Cowburn RF, Grundke-Iqbal I, Iqbal K (2003) Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer’s disease. Am J Pathol 163:845–858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Li LM, Zhang Y, Qiao JT, Zhang C (2010) Humanin protects neurons against apoptosis induced by Abeta31-35 through suppression of intrinsic pathway. Sheng Li Xue Bao 62:93–100

    PubMed  CAS  Google Scholar 

  39. Hashimoto Y, Kurita M, Aiso S, Nishimoto I, Matsuoka M (2009) Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp130. Mol Biol Cell 20:2864–2873

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Matsuoka M, Hashimoto Y (2010) Humanin and the receptors for humanin. Mol Neurobiol 41:22–28

    Article  PubMed  CAS  Google Scholar 

  41. Chiba T, Yamada M, Aiso S (2009) Targeting the JAK2/STAT3 axis in Alzheimer’s disease. Expert Opin Ther Targets 13:1155–1167

    Article  PubMed  CAS  Google Scholar 

  42. Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with bax activation. Nature 423:456–461

    Article  PubMed  CAS  Google Scholar 

  43. Zhai D, Luciano F, Zhu X, Guo B, Satterthwait AC, Reed JC (2005) Humanin binds and nullifies bid activity by blocking its activation of bax and bak. J Biol Chem 280:15815–15824

    Article  PubMed  CAS  Google Scholar 

  44. Chiba T, Nishimoto I, Aiso S, Matsuoka M (2007) Neuroprotection against neurodegenerative diseases: development of a novel hybrid neuroprotective peptide colivelin. Mol Neurobiol 35:55–84

    Article  PubMed  CAS  Google Scholar 

  45. Kariya S, Hirano M, Furiya Y, Ueno S (2005) Effect of humanin on decreased ATP levels of human lymphocytes harboring A3243G mutant mitochondrial DNA. Neuropeptides 39:97–101

    Article  PubMed  CAS  Google Scholar 

  46. Liu Y, Zhang Y, Lin L, Lin F, Li T, Du H, Chen R, Zheng W, Liu N (2013) Effects of bone marrow-derived mesenchymal stem cells on the axonal outgrowth through activation of PI3K/AKT signaling in primary cortical neurons followed oxygen-glucose deprivation injury. PLoS One 8:e78514

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Veronesi MC, Yard M, Jackson J, Lahiri DK, Kubek MJ (2007) An analog of thyrotropin-releasing hormone (TRH) is neuroprotective against glutamate-induced toxicity in fetal rat hippocampal neurons in vitro. Brain Res 1128:79–85

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by National Natural Science Foundation of China (30572085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ce Zhang.

Additional information

Jinfeng Zhao and Dan Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wang, D., Li, L. et al. Protective Effects of Humanin on Okadaic Acid-Induced Neurotoxicities in Cultured Cortical Neurons. Neurochem Res 39, 2150–2159 (2014). https://doi.org/10.1007/s11064-014-1410-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1410-3

Keywords

Navigation