Skip to main content
Log in

Complex-Valued UNet for Radar Image Segmentation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we design a complex-valued UNet (CV-UNet) architecture for radar complex data. This method selected the two-dimensional distributed complex-valued information after imaging as the feature, making full use of the amplitude and phase information in radar data, which is more suitable for the target segmentation with a small dataset. At the same time, an improved loss function is proposed to reduce the impact of the class imbalance problem. Compared to the real-valued UNet, UNet+, and UNet++ methods, the effectiveness and superiority of the CV-UNet are verified. The simulation results indicate that complex-valued operations can greatly improve the performance of segmentation, and our proposed loss function can effectively balance the loss values of different pixels to further improve the segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boer P, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on the cross-entropy method. Ann Oper Res 134(1):19–67

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  3. Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell 35(8):1915–1929

    Article  Google Scholar 

  4. Fukuda S, Hirosawa H (2001) Support vector machine classification of land cover: application to polarimetric SAR data. IEEE Int Geosci Remote Sens Symp IGARSS 1:187–189

    Google Scholar 

  5. Fang Z, Zhang G, Dai Q, Xue B (2022) Polsar image classification based on complex-valued convolutional long short-term memory network. IEEE Geosci Remote Sens Lett 19:1–5

    Google Scholar 

  6. Gong M, Zhao J, Liu J, Miao Q, Jiao L (2016) Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans Neural Netw Learn Syst 27(1):125–138

    Article  MathSciNet  Google Scholar 

  7. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern C 42(4):463–484

    Article  Google Scholar 

  8. Girshick R (2015) Fast R-CNN. In: IEEE international conference on computer vision (ICCV), pp 1440–1448 (2015)

  9. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 580–587

  10. Hirose A, Yoshida S (2012) Generalization characteristics of complex valued feedforward neural networks in relation to signal coherence. IEEE Trans Neural Netw Learn Syst 23(4):541–551

    Article  Google Scholar 

  11. He K, Gkioxari G, Dollar P, Girshick R (2020) Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 42(2):386–397

    Article  Google Scholar 

  12. Kechagias-Stamatis O, Aouf N, Belloni C (2017) SAR automatic target recognition based on convolutional neural networks. In: International conference on radar systems, pp 1–4

  13. Long J, Shelhamer E, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651

    Article  Google Scholar 

  14. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: single shot multibox detector. In: European conference on computer vision, pp 21–37

  15. Lin Y, Le Kernec J, Yang S, Fioranelli F, Romain O, Zhao Z (2018) Human activity classification with radar: optimization and noise robustness with iterative convolutional neural networks followed with random forests. IEEE Sens J 18(23):9669–9681

    Article  Google Scholar 

  16. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 779–788

  17. Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 6517–6525

  18. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention (MICCAI), pp 234–241

  19. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

    Article  Google Scholar 

  20. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A (2010) RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans Syst Man Cybern A Syst Hum 40(1):185–197

    Article  Google Scholar 

  21. Sheen D, McMakin D, Hall T (2001) Three-dimensional millimeterwave imaging for concealed weapon detection. IEEE Trans Microw Theory Technol 49(9):1581–1592

    Article  Google Scholar 

  22. Trabelsi C, Bilaniuk O, Zhang Y et al (2017) Deep complex networks. In: International conference on learning representations (ICLR), pp 1705–1724

  23. Tu Y, Lin Y, Hou C, Mao S (2020) Complex-valued networks for automatic modulation classification. IEEE Trans Veh Technol 69(9):10085–10089

    Article  Google Scholar 

  24. Vuola AO, Akram SU, Kannala J (2019) Mask-RCNN and U-Net ensembled for nuclei segmentation. In: IEEE 16th international symposium on biomedical imaging (ISBI), pp 208–212

  25. Wang C, Lien J (2007) AdaBoost learning for human detection based on histograms of oriented gradients. In: Asian conference on computer vision, pp 885–895

  26. Wasikowski M, Chen X (2010) Combating the small sample class imbalance problem using feature selection. IEEE Trans Knowl Data Eng 22(10):1388–1400

    Article  Google Scholar 

  27. Xie H, Wang S, Liu K, Lin S, Hou B (2014) Multilayer feature learning for polarimetric synthetic radar data classification. In: IEEE international symposium on geoscience and remote sensing (IGARSS), pp 2818–2821

  28. Zhou Y, Wang H, Xu F, Jin Y (2016) Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 13(12):1935–1939

    Article  Google Scholar 

  29. Zhang Z, Wang H, Xu F, Jin Y (2017) Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans Geosci Remote Sens 55(12):7177–7188

    Article  Google Scholar 

  30. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2020) UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging 39(6):1856–1867

    Article  Google Scholar 

  31. Zhou Z-H, Liu X-Y (2006) Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng 18(1):63–77

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YW and LZ wrote the main manuscript text and YW prepared all figures. LZ and ZS provide the hardware and software support. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhang Linxi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

The demo of this paper can be downloaded from https://pan.baidu.com/s/1rdZGe1I8B-92WXoAyZ4zbA?pwd=wyf1.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yufei, W., Linxi, Z. & Zuxun, S. Complex-Valued UNet for Radar Image Segmentation. Neural Process Lett 55, 8151–8162 (2023). https://doi.org/10.1007/s11063-023-11305-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-023-11305-1

Keywords

Navigation