Skip to main content
Log in

TriEP: Expansion-Pool TriHard Loss for Person Re-Identification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Person re-identification aims to identify the same person across different cameras, which is widely applied in the intelligent monitoring field. The research of TriHard loss has been verified to improve performance efficiently in the person re-identification task. However, TriHard loss considers the hardest positive sample and the hardest negative sample exclusively, which ignores the remaining samples. To stuff this gap, we propose an expansion-pool TriHard (TriEP) loss which can give attention to the hardest samples and other samples. Initially, the equal-label sample pools are expanded based on the labels of the hardest samples. Then, the statistics of the sample pool are calculated according to the distribution of samples. Finally, the dynamic penalty is imposed on TriHard loss to construct TriEP loss. Extensive experiments on Market-1501, DukeMTMC, and occluded datasets prove the superiority of the proposed TriEP loss. Compared with the baseline model, a noticeable performance improvement can be obtained after embedding the proposed TriEP loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geng M, Wang Y, Xiang T, Tian Y (2016) Deep transfer learning for person re-identification. arXiv preprint arXiv:1611.05244

  2. Lin Y, Zheng L, Zheng Z, Wu Y, Hu Z, Yan C, Yang Y (2019) Improving person re-identification by attribute and identity learning. Pattern Recognit 95:151–161

    Article  Google Scholar 

  3. Li D, Wei X, Hong X, Gong Y (2020) Infrared-visible cross-modal person re-identification with an x modality. In: Proceedings of IEEE AAAI. pp 4610–4617

  4. Huang Z, Qin W, Luo F, Guan T, Xie F, Han S, Sun D (2021) Combination of validity aggregation and multi-scale feature for person re-identification. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-021-03473-6

  5. Zheng X, Luo H, Fan X, Xiang W, Jian S (2017) Alignedreid: surpassing human-level performance in person re-identification. arXiv preprint arXiv:1711.08184

  6. Wei L, Zhang S, Yao H, Gao W, Tian Q (2019) Glad: global-local-alignment descriptor for pedestrian retrieval. IEEE Trans Multimed 21(4):986–999

    Article  Google Scholar 

  7. Li D, Chen X, Zhang Z, Huang K (2017) Learning deep context-aware features over body and latent parts for person re-identification. In: Proceedings of IEEE CVPR. pp 7398–7407

  8. Li W, Zhao R, Xiao T, Wang X (2014) Deepreid: deep filter pairing neural network for person re-identification. In: Proceedings of IEEE CVPR. pp 152–159

  9. Ustinova E, Ganin Y, Lempitsky V (2017) Multi-region bilinear convolutional neural networks for person re-identification. In: Proceedings of IEEE AVSBS. pp 1–6

  10. Cheng D, Gong Y, Zhou S, Wang J, Zheng N (2016) Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: Proceedings of IEEE CVPR. pp 1335–1344

  11. Din S, Lin L, Chao H, Wang G (2015) Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit 48(10):2993–3003

    Article  Google Scholar 

  12. Hermans A, Beyer L, Leibe B (2017) In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737

  13. Gray D, Tao H (2008) Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Proceedings of ECCV, pp 262–275

  14. Li Z, Chang S, Liang F, Huang T, Cao L, Smith J (2013) Learning locally-adaptive decision functions for person verification. In: Proceedings of IEEE CVPR. pp 3610–3617

  15. Cheng D, Cristani M, Stoppa M, Bazzani L, Murino V (2011) Custom pictorial structures for re-identification. In: Proceedings of BMVC. pp 1–11

  16. Wang X, Yang M, Zhu S, Lin Y (2015) Regionlets for generic object detection. IEEE Trans Pattern Anal Mach Intell 37(10):2071–2084

    Article  Google Scholar 

  17. Liao S, Hu Y, Zhu X, Li S (2015) Person re-identification by local maximal occurrence representation and metric learning. In: Proceedings of IEEE CVPR. pp 2197–2206

  18. Weinberger K, Saul L (2009) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 10(12):207–244

    MATH  Google Scholar 

  19. Brockmeier J, Giraldo L, Emigh M, Bae J, Principe J (2013) Information-theoretic metric learning: 2-d linear projections of neural data for visualization. In: Proceedings of IEEE EMBS. pp 5586–5589

  20. Kostinger M, Hirzer M, Wohlhart P (2012) Large scale metric learning from equivalence constraints. In: Proceedings of IEEE CVPR. pp 2288–2295

  21. Pedagadi S, Orwell J, Velastin S, Boghossian B (2013) Local fisher discriminant analysis for pedestrian re-identification. In: Proceedings of IEEE CVPR. pp 3318–3325

  22. Su C, Li J, Zhang S, Xing J, Gao W, Tian Q (2017) Pose-driven deep convolutional model for person re-identification. In: Proceedings of IEEE ICCV. pp 3980–3989

  23. Liu X, Zhao H, Tian M, Sheng L, Shao J, Yi S, Yan J, Wang X (2017) Hydraplus-net: attentive deep features for pedestrian analysis. In: Proceedings of IEEE ICCV. pp 350–359

  24. Sun Y, Zheng L, Yang Y, Wang S, Tian Q (2018) Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Proceedings of IEEE ECCV. pp 501–518

  25. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. In: Proceedings of IEEE CVPR. pp 845–853

  26. Marín-Reyes PA, Marra M, Lorenzo-Navarro J, Santana MC (2019) Averobot: an audio-visual dataset for people re-identification and verification in human-robot interaction. In: Proceedings of international conference on pattern recognition applications and methods. pp 255–265

  27. Chen W, Chen X, Zhang J, Huang K (2017) Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of IEEE CVPR. pp 1320–1329

  28. Xiao Q, Luo H, Zhang C (2017) Margin sample mining loss: a deep learning based method for person re-identification. arXiv preprint arXiv:1710.00478

  29. Zhao C, Lv X, Zuo W, Miao D (2020) Deep fusion feature representation learning with hard mining center-triplet loss for person re-identification. IEEE Trans Multimed 99:1

    Google Scholar 

  30. Lv X, Zhao C, Chen W (2019) A novel hard mining center-triplet loss for person re-identification. In: Proceedings of Chinese conference on pattern recognition and computer vision. pp 199–210

  31. Liu H, Tan X, Zhou X (2020) Parameters sharing exploration and hetero-center based triplet loss for visible-thermal person re-identification. arXiv preprint arXiv:2008.06223

  32. Si T, Zhang Z, Liu S (2019) Compact triplet loss for person re-identification in camera sensor networks. Ad Hoc Netw 95(11):1–8

    Google Scholar 

  33. Luo H, Gu Y, Liao X, Lai S, Jiang W (2019) Bag of tricks and a strong baseline for deep person re-identification. In: Proceedings of IEEE CVPR. pp 1487–1495

  34. Zhong Z, Zheng L, Kang G, Li S, Yang Y (2017) Random erasing data augmentation. arXiv preprint arXiv:1708.04896

  35. Fan X, Jiang W, Luo H, Fei M (2018) Spherereid: deep hypersphere manifold embedding for person re-identification. arXiv preprint arXiv:1807.00537

  36. Zheng Z, Zheng L, Yang Y (2016) A discriminatively learned cnn embedding for person re-identification. ACM Trans Multimed Comput Commun Appl 14(1):1–20

    Article  MathSciNet  Google Scholar 

  37. Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: a benchmark. In: Proceedings of IEEE ICCV. pp 1116–1124

  38. Ristani E, Solera F, Zou R, Cucchiara R, Tomasi C (2016) Performance measures and a data set for multi-target, multicamera tracking. In: Proceedings of IEEE ICCV. pp 17–35

  39. Miao J, Wu Y, Liu P, Ding Y, Yang Y (2019) Pose-guided feature alignment for occluded person re-identification. In: Proceedings of IEEE ICCV. pp 542–551

  40. Zheng W, Gong S, Xiang T (2011) Person re-identification by probabilistic relative distance comparison. In: Proceedings of IEEE CVPR. pp 649–656

  41. Sun Y, Xu Q, Li Y, Zhang C, Li Y, Wang S, Sun J (2019) Perceive where to focus: learning visibility-aware part-level features for partial person reidentification. In: Proceedings of IEEE CVPR. pp 393–402

  42. Tay C, Roy S, Yap K (2019) Aanet: attribute attention network for person re-identifications. In: Proceedings of IEEE CVPR. pp 7127–7136

  43. Zhuang Z, Wei L, Xie L, Zhang T, Zhang H, Wu H, Ai H, Tian Q (2020) Rethinking the Distribution Gap of Person Re-identification with Camera-Based Batch Normalization. In: Proceedings of IEEE ECCV. pp 140–157

  44. Hou R, Ma B, Chang H, Gu X, Shan S, Chen X (2019) Interaction-and-aggregation network for person re-identification. In: Proceedings of IEEE CVPR. pp 9309–9318

  45. Zhou K, Yang Y, Cavallaro A, Xiang T (2019) Omni-scale feature learning for person re-identification. In: Proceedings of IEEE ICCV. pp 3701–3711

  46. Quan R, Dong X, Wu Y, Zhu L, Yang Y (2019) Auto-reid: searching for a part-aware convnet for person re-identification. In: Proceedings of IEEE ICCV. pp 3749–3758

  47. Zheng Z, Yang X, Yu Z, Zheng L, Yang Y, Kautz J (2019) Joint discriminative and generative learning for person re-identification. In: Proceedings of IEEE CVPR. pp 2133–2142

  48. Dai Z, Chen M, Gu X, Zhu S, Tan P (2019) Batch dropblock network for person re-identification and beyond. In: Proceedings of IEEE ICCV. pp 3690–3700

  49. Fan X, Jiang W, Luo H, Fei M (2019) Spherereid: Deep hypersphere manifold embedding for person re-identification. J Vis Commun Image Rep 60:51–58

  50. He L, Liang J, Li H, Sun Z (2018) Deep spatial feature reconstruction for partial person re-identification: alignment-free approach. In: Proceedings of IEEE CVPR, pp 7073–7082

  51. He L, Sun Z, Zhu Y, Wang Y (2018) Recognizing partial biometric patterns. arXiv preprint arXiv:1810.07399

  52. Miao J, Wu Y, Yang Y (2021) Identifying visible parts via pose estimation for occluded person re-identification. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3059515

  53. Wang G, Yang S, Liu H, Wang Z, Yang Y, Wang S, Yu G, Zhou E, Sun J (2020) High-order information matters: learning relation and topology for occluded person re-identification. In: Proceedings of IEEE CVPR. pp 6448–6457

  54. Zhang X, Yan Y, Xue J, Hua Y, Wang H (2020) Semantic-aware occlusion-robust network for occluded person re-identification. IEEE Trans Circ Syst Video Technol 31(7):2764–2778

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Qin, W., Tahsin, L. et al. TriEP: Expansion-Pool TriHard Loss for Person Re-Identification. Neural Process Lett 54, 2413–2432 (2022). https://doi.org/10.1007/s11063-021-10736-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10736-y

Keywords

Navigation