Skip to main content
Log in

Convolutional Shape-Aware Representation for 3D Object Classification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Deep learning has recently emerged as one of the most popular and powerful paradigms for learning tasks. In this paper, we present a deep learning approach to 3D shape classification using convolutional neural networks. The proposed framework takes a multi-stage approach that first represents each 3D shape in the dataset as a 2D image using the bag-of-features model in conjunction with intrinsic spatial pyramid matching that leverages the spatial relationship between features. These 2D images are then fed into a pre-trained convolutional neural network to learn deep convolutional shape-aware descriptors from the penultimate fully-connected layer of the network. Finally, a multiclass support vector machine classifier is trained on the deep descriptors, and the classification accuracy is subsequently computed. The effectiveness of our approach is demonstrated on three standard 3D shape benchmarks, yielding higher classification accuracy rates compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press, Cambridge

    MATH  Google Scholar 

  2. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  3. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  Google Scholar 

  4. Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of ICCV, pp 945–953

  5. Qi C, Su H, Nießner M, Dai A, Yan M, Guibas L (2016) Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of CVPR

  6. Wu J, Zhang C, Xue T, Freeman B, Tenenbaum J (2016) Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NIPS

  7. Rustamov R (2007) Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of symposium geometry processing, pp 225–233

  8. Sun J, Ovsjanikov M, Guibas L (2009) A concise and provably informative multi-scale signature based on heat diffusion. Comput Graph Forum 28(5):1383–1392

    Article  Google Scholar 

  9. Bronstein M, Kokkinos I (2010) Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proceedings of CVPR, pp 1704–1711

  10. Aubry M, Schlickewei U, Cremers D (2011) The wave kernel signature: a quantum mechanical approach to shape analysis. In: Proceedings of computational methods for the innovative design of electrical devices, pp 1626–1633

  11. Li C, Ben Hamza A (2013) A multiresolution descriptor for deformable 3D shape retrieval. Vis Comput 29:513–524

    Article  Google Scholar 

  12. Guler R, Tari S, Unal G (2014) Screened poisson hyperfields for shape coding. SIAM J Imaging Sci 7(4):2558–2590

    Article  MathSciNet  MATH  Google Scholar 

  13. Ye J, Yu Y (2015) A fast modal space transform for robust nonrigid shape retrieval. Vis Comput 32(5):553–568

    Article  Google Scholar 

  14. Rosenberg S (1997) The Laplacian on a Riemannian manifold. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  15. Bronstein A, Bronstein M, Kimmel R (2008) Numerical geometry of non-rigid shapes. Springer, New York

    MATH  Google Scholar 

  16. Krim H, Ben Hamza A (2015) Geometric methods in signal and image analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  17. Reuter M, Wolter F, Peinecke N (2006) Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput Aided Des 38(4):342–366

    Article  Google Scholar 

  18. Ben Hamza A (2016) A graph-theoretic approach to 3D shape classification. Neurocomputing 211:11–21

    Article  Google Scholar 

  19. Nowak E, Jurie F, Triggs B (2006) Sampling strategies for bag-of-features image classification. In: Proceedings of ECCV

  20. Bronstein A, Bronstein M, Guibas L, Ovsjanikov M (2011) Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans Graph 30(1):1

    Article  Google Scholar 

  21. Litman R, Bronstein A, Bronstein M, Castellani U (2014) Supervised learning of bag-of-features shape descriptors using sparse coding. Comput Graph Forum 33(5):127–136

    Article  Google Scholar 

  22. Bu S, Liu Z, Han J, Wu J, Ji R (2014) Learning high-level feature by deep belief networks for 3-D model retrieval and recognition. IEEE Trans Multimed 24(16):2154–2167

    Article  Google Scholar 

  23. Lipman Y, Rustamov R, Funkhouser T (2010) Biharmonic distance. ACM Trans Graph 29(3):1–11

    Article  Google Scholar 

  24. Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of CVPR, pp 1912–1920

  25. Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204:41–50

    Article  Google Scholar 

  26. Bronstein M, Bruna J, LeCun Y, Szlam A, Vandergheynst P (2016) Geometric deep learning: going beyond Euclidean data. arXiv:1611.08097

  27. Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: NIPS pp 1097–1105

  28. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR

  29. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of CVPR

  30. Kanezaki A, Matsushita Y, Nishida Y (2016) RotationNet: joint learning of object classification and viewpoint estimation using unaligned 3D object dataset. arXiv:1603.06208

  31. Bu S, Wanga L, Hana P, Liu Z, Li K (2017) 3-D shape recognition and retrieval based on multi-modality deep learning. Neurocomputing 259:183–193

    Article  Google Scholar 

  32. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proceedings of CVPR, pp 3360–3367

  33. Li C, Ben Hamza A (2013) Intrinsic spatial pyramid matching for deformable 3D shape retrieval. Int J Multimed Inf Retr 2:261–271

    Article  Google Scholar 

  34. LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W, Jackel L (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  35. Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014) Return of the devil in the details: delving deep into convolutional nets. In: Proceedings of BMVC

  36. Lian Z, Zhang J, Choi S, ElNaghy H, El-Sana J, Furuya T, GiachettiA, Isaia RGL, Lai L, Li C, Li H, Limberger F, Martin R, Nakanishi R, Nonato ANL, Ohbuchi R, Pevzner K, Pickup D, Rosin P, Sharf A, Sun L, Sun X, Tari S, Unal G, Wilson R (2015) SHREC’15 track: non-rigid3D shape retrieval. In: Proceedings of eurographics workshop on 3D object retrieval, pp 1–14

  37. Shi B, Bai S, Zhou Z, Bai X (2015) Deeppano: deep panoramic representation for 3D shape recognition. IEEE Signal Process Lett 22(12):2339–2343

    Article  Google Scholar 

  38. Sinha A, Bai J, Ramani K (2016) Deep learning 3D shape surfaces using geometry images. In: Proceedings of ECCV

  39. Qi C, Yi L, Su H, Guibas L (2017) Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: NIPS

  40. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSERC Discovery Grant N00929.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Hamza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodrati, H., Luciano, L. & Hamza, A.B. Convolutional Shape-Aware Representation for 3D Object Classification. Neural Process Lett 49, 797–817 (2019). https://doi.org/10.1007/s11063-018-9858-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9858-9

Keywords

Navigation