Skip to main content
Log in

Chebyshev Functional Link Artificial Neural Network Based on Correntropy Induced Metric

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, the Correntropy Induced Metric (CIM) as an alternative to the well-known mean square error (MSE) is employed in Chebyshev functional link artificial neural network (CFLANN) to deal with the noisy training data set and enhance the generalization performance. The MSE performs well under Gaussian noise but it is sensitive to large outliers. The CIM as a local similarity measure, however, can improve significantly the anti-noise ability of CFLANN. The convergence of the proposed algorithm, namely the CFLANN based on CIM (CFLANNCIM), has been analyzed. Simulation results on nonlinear channel identification show that CFLANNCIM can perform much better than the traditional CFLANN and multiple-layer perceptron (MLP) neural networks trained under MSE criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hassoun MH (1995) Fundamentals of artificial neural networks. MIT press, Cambridge

    MATH  Google Scholar 

  2. Hassoun MH (1996) Artificial neural networks for modelling and control of nonlinear systems [book reviews]. IEEE Trans Neural Netw 7(5):1316

    Google Scholar 

  3. Pao Y-H (1989) Adaptive pattern recognition and neural networks. Addison-Wesley, Reading

    MATH  Google Scholar 

  4. Hassoun MH, Clark DW (1988) An adaptive attentive learning algorithm for single-layer neural networks. In: IEEE international conference on neural networks, pp 431–440

  5. Patra JC, Kot AC (2002) Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans Syst Man Cybern Part B Cybern 32(4):505–511

    Article  Google Scholar 

  6. Weng WD, Yang CS, Lin RC (2007) A channel equalizer using reduced decision feedback Chebyshev functional link artificial neural networks. Inf Sci 177(13):2642–2654

    Article  MATH  Google Scholar 

  7. Mili F, Hamdi M (2012) A hybrid evolutionary functional link artificial neural network for data mining and classification. In: 2012 IEEE 6th international conference on sciences of electronics, technologies of information and telecommunications (SETIT), pp 917–924

  8. Dehuri S, Roy R, Cho SB et al (2012) An improved swarm optimized functional link artificial neural network (ISO-FLANN) for classification. J Syst Softw 85(6):1333–1345

    Article  Google Scholar 

  9. Patra JC, Pal RNA (1995) Functional link artificial neural network for adaptive channel equalization. Signal Process 43(2):181–195

    Article  MATH  Google Scholar 

  10. Li M, Liu J, Jiang Y et al (2012) Complex-Chebyshev functional link neural network behavioral model for broadband wireless power amplifiers. IEEE Trans Microw Theory Tech 60(6):1979–1989

    Article  Google Scholar 

  11. Mall S, Chakraverty S (2017) Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process Lett 45(3):825–840

  12. Patra JC, Chin WC, Meher PK et al (2008) Legendre-FLANN-based nonlinear channel equalization in wireless communication system. In: IEEE international conference on systems, man and cybernetics, pp 1826–1831

  13. Peterson LE, Larine KV (2008) Hermite/Laguerre neural networks for classification of artificial fingerprints from optical coherence tomography. In: IEEE seventh international conference on machine learning and applications, pp 637–643

  14. Chakravarty S, Dash PKA (2012) PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices. Appl Soft Comput 12(2):931–941

    Article  Google Scholar 

  15. Zhao H, Zeng X, Zhang J (2010) Adaptive reduced feedback FLNN filter for active control of nonlinear noise processes. Signal Process 90(3):834–847

    Article  MATH  Google Scholar 

  16. Xu B, Wang Y, Yang X (2013) Navigation satellite clock error prediction based on functional network. Neural Process Lett 38(2):305–320

    Article  MathSciNet  Google Scholar 

  17. Lee TT, Jeng JT (1998) The Chebyshev-polynomials-based unified model neural networks for function approximation. IEEE Trans Syst Man Cybern Part B Cybern 28(6):925–935

    Article  Google Scholar 

  18. Dehuri S, Cho SB (2010) A comprehensive survey on functional link neural networks and an adaptive PSO-BP learning for CFLNN. Neural Comput Appl 19(2):187–205

    Article  Google Scholar 

  19. Zhao H, Zhang J (2008) Functional link neural network cascaded with Chebyshev orthogonal polynomial for nonlinear channel equalization. Signal Process 88(8):1946–1957

    Article  MATH  Google Scholar 

  20. Purwar S, Kar IN, Jha AN (2007) On-line system identification of complex systems using Chebyshev neural networks. Appl Soft Comput 7(1):364–372

    Article  Google Scholar 

  21. Zou AM, Kumar KD, Hou ZG (2010) Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks. IEEE Trans Neural Netw 21(9):1457–1471

    Article  Google Scholar 

  22. Golub GH, Van Loan CF (1983) Matrix computation. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  23. Liu W, Pokharel PP, Príncipe JC (2007) Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans Signal Process 55(11):5286–5298

    Article  MathSciNet  Google Scholar 

  24. Singh A, Principe JC (2009) Using correntropy as cost function in adaptive filters. In: Proceedings of international joint conference on neural networks, pp 2950–2955

  25. Chen B, Xing L, Liang J et al (2014) Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process Lett 21(7):880–884

    Article  Google Scholar 

  26. Zhao S, Chen B, Principe JC (2011) Kernel adaptive filtering with maximum correntropy criterion. In: Proceedings of international joint conference on neural networks, pp 2012–2017

  27. Ma W, Qu H, Gui G, Xu L, Zhao J, Chen B (2015) Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments. J Frankl Inst 352(7):2708–2727

    Article  Google Scholar 

  28. Chen B, Xing L, Zhao H, Zheng N, Principe JC (2016) Generalized correntropy for robust adaptive filtering. IEEE Trans Signal Process 64(13):3376–3387

    Article  MathSciNet  Google Scholar 

  29. Yuan X, Hu BG (2009) Robust feature extraction via information theoretic learning. In: Proceedings of the 26th annual international conference on machine learning (ACM), pp 1193–1200

  30. He R, Zheng WS, Hu BG et al (2011) A regularized correntropy framework for robust pattern recognition. Neural Comput 23(8):2074–2100

    Article  MATH  Google Scholar 

  31. Xing HJ, Wang XM (2013) Training extreme learning machine via regularized correntropy criterion. Neural Comput Appl 23(7–8):1977–1986

    Article  Google Scholar 

  32. Bessa RJ, Miranda V, Gama J (2009) Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. IEEE Trans Power Syst 24(4):1657–1666

    Article  Google Scholar 

  33. Qu H, Ma W, Zhao J, Wang T (2013) Prediction method for network traffic based on maximum correntropy criterion. China Commun 10(1):135–142

    Google Scholar 

  34. Chalasani R, Principe JC (2010) Self organizing maps with the correntropy induced metric. In: The 2010 international joint conference on neural networks (IJCNN), pp 1–6

  35. Seth S, Príncipe JC (2008) Compressed signal reconstruction using the correntropy induced metric. In: IEEE international conference on acoustics, speech and signal processing, pp. 3845–3848

  36. Chen B, Principe JC (2012) Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Process Lett 19(8):491–494

    Article  Google Scholar 

  37. Chen B, Wang J, Zhao H, Zheng N, Principe JC (2015) Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process Lett 22(10):1723–1727

    Article  Google Scholar 

  38. Wu Z, Peng S, Chen B, Zhao H (2015) Robust hammerstein adaptive filtering under maximum correntropy criterion. Entropy 17(10):7149–7166

    Article  MathSciNet  Google Scholar 

  39. Ebrahimpour R, Kabir E, Yousefi MR (2007) Face detection using mixture of MLP experts. Neural Process Lett 26(1):69–82

    Article  MATH  Google Scholar 

  40. Benoudjit N, Verleysen M (2003) On the kernel widths in radial-basis function networks. Neural Process Lett 18(2):139–154

    Article  Google Scholar 

  41. Frénay B, Verleysen M (2011) Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing 74(16):2526–2531

    Article  Google Scholar 

  42. Patra JC, Kot AC (2002) Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans Syst Man Cybern Part B (Cybern) 32(4):505–511

    Article  Google Scholar 

  43. Patra JC, Van den Bos A (2000) Modeling of an intelligent pressure sensor using functional link artificial neural networks. ISA Trans 39:15–27

    Article  Google Scholar 

  44. Patra JC, Meher PK, Chakraborty G (2009) Nonlinear channel equalization for wireless communication systems using Legendre neural networks. Signal Process 89(11):2251–2262

    Article  MATH  Google Scholar 

  45. Wang J, Wu W, Li Z et al (2011) Convergence of gradient method for double parallel feedforward neural network. Int J Numer Anal Model 8:484–495

    MathSciNet  MATH  Google Scholar 

  46. Zhang N, Wu W, Zheng G (2006) Convergence of gradient method with momentum for two-layer feedforward neural networks. IEEE Trans Neural Netw 17(2):522–525

    Article  Google Scholar 

  47. Ortega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables. Academic Press, New York

    MATH  Google Scholar 

  48. Shao M, Nikias CL (1993) Signal processing with fractional lower order moments: stable processes and their applications. Proc IEEE 81(7):986–1010

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by 973 Program (No. 2015CB351703), National Natural Science Foundation of China (61372152), and the Doctoral Scientific Research Foundation of Xi’an University of Technology (No. 103-256081611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Duan, J., Zhao, H. et al. Chebyshev Functional Link Artificial Neural Network Based on Correntropy Induced Metric. Neural Process Lett 47, 233–252 (2018). https://doi.org/10.1007/s11063-017-9646-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9646-y

Keywords

Navigation