Skip to main content
Log in

Effects of Injections of Nanostructured Titanium Dioxide into the Rat Medullary Nuclei Involved in Cardiovascular Control

  • Published:
Neurophysiology Aims and scope

Effects of injections of titanium dioxide nanoparticles into the medullary nuclei involved in cardiovascular control (nuclei reticularis paramedianus, reticularis lateralis, and ambiguus) on the blood pressure and heart rate were examined in rats. The nanoparticles (TiO2, PlasmaChem GmbH, D-12489 Berlin, Germany) were used in the form of a nanopowder (mixture of rutile and anatase). The average particle size measured using a scanning electron microscope was 21 ± 5 nm, the specific surface area of the particles was 50 ± 10 m2/g, the purity exceeded 99.5%, the Al2O3 content was below 0.3 mass %, and the SiO2 content did not exceed 0.2%. The nanoparticles were dispersed in Krebs solution (pH 7.4) using ultrasonic cavitation processing for 2 min at 37 kHz. The zeta potential of TiO2 suspension was – 7.93 mV. To provide the aggregate stability of aqueous suspensions of TiO2 nanoparticles, the latter were mechanically stirred. Injections of nanosized TiO2 in the mentioned medullary nuclei induced noticeable changes in the blood pressure, which depended on the concentration and the site (nucleus) of injection. Changes in the heart rate were insignificant in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Prodanchuk and G. M. Balan, “Titanium dioxide nanoparticles and their potential risk to health and the environment,” Sovr. Probl. Toksicol., No. 4, 11-27 (2011).

  2. T. L. Rogachevskaya, “Determination of chemically bound OH-groups in the hydrated titanium dioxide,” J. Appl. Chem., 46, 964-967 (1973).

    Google Scholar 

  3. A. Vittadini, A. Sellini, F. P. Rotzinger, and M. Grätzel, “Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations,” J. Phys. Chem., 104, 1300-1306 (2000).

    Article  CAS  Google Scholar 

  4. U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep., 48, 53-229 (2003).

    Article  CAS  Google Scholar 

  5. X. Gong and A. Selloni, “Role of steps in the reactivity of the anatase TiO2 (101) surface,” J. Catal., 249, 134-139 (2007).

    Article  CAS  Google Scholar 

  6. W. Langel, “Simulation of the interface between titanium oxide and amino acids in solution by first principles MD,” Surf. Sci., 538, 1-9 (2003).

    Article  CAS  Google Scholar 

  7. A. Dhasmana, Q. M. Sajid Jamal, S. S. Mir, et al., “Titanium dioxide nanoparticles as guardian against environmental carcinogen benzo [alpha] pyrene,” PloS One, 12, 9, e107068 (2014).

  8. A. M. Naumenko, A. Y. Nyporko, O. V. Tsymbalyuk, et al., “Molecular docking of nanosized titanium dioxide material to the extracellular part of GABAB-receptor,” Stud. Biol., 10, 5-16 (2016).

    Article  Google Scholar 

  9. T. V. Bolton and A. V. Zholos, “Activation of M2 muscarinic receptors in guinea-pig ileum opens cationic channels modulated by M3 muscarinic receptors,” Life Sci., 60, 1121-1128 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. R. M. Eglen, “Muscarinic receptors and gastrointestinal tract smooth muscle function,” Life Sci., 68, 2573-2578 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. O. V. Tsymbalуuk, A. M. Naumenko, M. A. Skoryk, et al., “Histamine- and nicotine-stimulated modulations of mechanic activity of smooth muscles in gastrointestinal tract at the impact of nanosized TiO2 material,” Biopolym. Cell, 32, 140-149 (2016).

    Article  Google Scholar 

  12. H. Shi, R. Magaye, V. Castranova, et al., “Titanium dioxide nanoparticles: a review of current toxicological data,” Part. Fibre Toxicol., 10, 15-35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Lim, M. A. Clements, and J. Dobson, “Delivery of short interfering ribonucleic acid complexed magnetic nanoparticles in an oscillating field occurs via caveolae-mediated endocytosis,” PloS One, 7, No. 12, e51350 (2012).

  14. E. V. Golikova, Yu. M. Chernoberezhsky, and O. M. Johanson, “On the correlation of aggregate stability and integral electro-surface characteristics of oxide dispersions,” Colloid J., 62, No. 5, 596-605 (2000).

    Google Scholar 

  15. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Acad. Press, New York (1982).

    Google Scholar 

  16. O. V. Tsymbalyuk, A. M. Naumenko, O. O. Rohovtsov, et al., “Titanium dioxide modulation of the contractibility of visceral smooth muscles in vivo,” Nanoscale Res. Lett., 1, 129 DOI https://doi.org/10.1186/s11671-017-1865 (2017).

    Article  Google Scholar 

  17. A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surface: principles, mechanisms and selected results,” Chem. Rev., 95, 735-775 (1995).

    Article  CAS  Google Scholar 

  18. J. Zhao, L. Bowman, X. Zhang, et al., “Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways,” J. Toxicol. Environ. Health, 72, 1141-1149 (2009).

    Article  CAS  Google Scholar 

  19. W. S. Cho, B. C. Kang, J. K. Lee, et al., “Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration,” Part. Fibre Toxicol., 10, 9 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. F. J. Khalili, S. Jafari, and M. A. Eghbal, “A review of molecular mechanisms involved in toxicity of nanoparticles,” Adv. Pharm.. Bull., 5, No. 4, 447-454 (2015).

    Article  CAS  Google Scholar 

  21. B. Song, J. Liu, X. Feng, et al., “A review on potential neurotoxicity of titanium dioxide nanoparticles,” Nanoscale Res. Lett., No. 1, 342 (2015).

  22. S. Q. Li, R. R. Zhu, H. Zhu, et al., “Nanotoxicity of TiO2 nanoparticles to erythrocytes in vitro,” Food Chem. Toxicol., 46, 3626-3631 (2008).

  23. J. Wang, Y. Liu, F. Jiao, and W. Li, “Time dependent translocation and potential impairment of central nervous system by intranasally instilled TiO2 nanoparticles,” Toxicology, 10, 1016-1020 (2008).

    Google Scholar 

  24. J. R. Gurr, A. S. Wang, and C. H. Chen, “Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells,” Toxicology, 21, 66-73 (2005).

  25. K. Unfried, C. Albrecht, and L. O. Klotz, “Cellular responses to nanoparticles: Target structures and mechanisms,” Nanotoxicology, 1, 52-57 (2007).

  26. S. J. Kang, B. M. Kim, Y. J. Lee, and H. W. Chung, “Titanium dioxide nanoparticles trigger p53 mediated damage response in peripheral blood lymphocytes,” Environ. Mol. Mutagen, 49, 5, 399-405 ( 2008).

    Article  CAS  PubMed  Google Scholar 

  27. W. W. Yang, A. J. Miao, and L. Y. Yang, “Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles,” Plos One, 7, 1-8 (2012).

  28. L. Liu, P. Y. Yu, X. Chen, et al., “Hydrogenation and disorder in engineered black TiO2,” Phys. Rev. Lett., 9, 111, 065505 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Naumenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumenko, A.M., Dmytrenko, O.V., Shapoval, L.M. et al. Effects of Injections of Nanostructured Titanium Dioxide into the Rat Medullary Nuclei Involved in Cardiovascular Control. Neurophysiology 50, 409–414 (2018). https://doi.org/10.1007/s11062-019-09772-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09772-1

Keywords

Navigation