Skip to main content
Log in

Effects of Melatonin Administration in Different Time Modes on Morphofunctional Indices of the Hypothalamic Serotonergic Neurons in Obese Rats

  • Published:
Neurophysiology Aims and scope

We examined the effects of introduction of melatonin in different time modes on morphofunctional parameters of serotonergic neurocytes of the rat hypothalamic arcuate nucleus (cross-sectional area of the neurocyte nuclei, content of serotonin vesicles per neuron, and number/density of serotonergic neurons); general levels of tryptophan and serotonin in the rat brain were also estimated. Experimental animal groups included rats with normal body mass and rats with obesity induced by a high-calorie diet; three different modes of melatonin introduction were used (single introductions by gavage in the morning, similar introductions in the evening, and continuous introduction with drinking water, i.e., distributed in time). Animals with high-calorie diet-induced obesity were characterized by a greater mean area of cross-sections of the neurocyte nuclei, a smaller number of serotonin-positive neurocytes, and smaller numbers of serotonin-containing vesicles in each neurocyte of the arcuate nucleus. The levels of serotonin and its precursor tryptophan in the brain were also smaller in the above (obese) rats. Introductions of melatonin into rats fed a high-calorie diet provided relative smoothing of the abovementioned changes: the dimensions of the neurocyte nuclei became close to the control values. The number of serotonin-positive neurons increased (only at evening and time-distributed introductions), the number of serotonin-containing vesicles was greater (exclusively at distributed melatonin introductions), and the general contents of serotonin and tryptophan in the brain also increased (at evening and distributed introductions). The mode of continuous distributed introduction of melatonin with drinking water was found to be most effective. Thus, introductions of melatonin improve the functional state of serotonergic neurocytes in the hypothalamic arcuate nucleus of rats with moderate pathological manifestations of obesity; the intensity of melatonin-induced morphofunctional shifts depends noticeably on the time mode of its introduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ng, T. Fleming, M. Robinson, et al., “Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013,” Lancet, 384, No. 9945, 766-781 (2014).

    Article  Google Scholar 

  2. The official data of the WHO Bulletin published in May 2017. Available from: http://www.who.int

  3. R. Hardeland, D. P. Cardinali, V. Srinivasan, et al., “Melatonin – A pleiotropic, orchestrating regulator molecule,” Prog. Neurobiol., 93, No. 3, 350-384 (2011).

    Article  CAS  Google Scholar 

  4. J. Cipolla-Neto, F. G. Amaral, S. C. Afeche, et al., “Melatonin, energy metabolism, and obesity: a review,” J. Pineal Res., 56, No. 4, 371-381 (2014).

    Article  CAS  Google Scholar 

  5. R. Flavia, M. Diederich, and L. Ghibelli, “Melatonin: a pleiotropic molecule regulating inflammation,” Biochem. Pharmacol., 80, No. 12, 1844-1852 (2010).

    Article  Google Scholar 

  6. M. Reina and A. Martínez, “A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK),” Comput. Theor. Chem., 1123, 111-118 (2018).

    Article  CAS  Google Scholar 

  7. A. Jiménez-Aranda, G. Fernández-Vázquez, D. Campos, et al., “Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats,” J. Pineal Res., 55, No. 4, 416-423 (2013).

    PubMed  Google Scholar 

  8. D. X. Tan, L. C. Manchester, L. Fuentes-Broto, et al., “Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity,” Obes. Rev., 12, No. 3, 167-188 (2011).

    Article  CAS  Google Scholar 

  9. K. Szewczyk-Golec, A. Woźniak, and R. J. Reiter, “Inter-relationships of the chronobiotic melatonin with leptin and adiponectin: implications for obesity,” J. Pineal Res., 59, No. 3, 277-291 (2015).

    Article  CAS  Google Scholar 

  10. M. Aydin, S. Canpolat, T. Kuloğlu, et al., “Effects of pinealectomy and exogenous melatonin on ghrelin and peptide YY in gastrointestinal system and neuropeptide Y in hypothalamic arcuate nucleus: immunohistochemical studies in male rats,” Regul. Pept., 146, No. 1-3, 197-203 (2008).

    Article  CAS  Google Scholar 

  11. D. D. Lam, A. S. Garfield, O. J. Marston, et al., ‘Brain serotonin system in the coordination of food intake and body weight,” Pharmacol. Biochem. Behav., 97, No. 1, 84-91 (2010).

    Article  CAS  Google Scholar 

  12. R. J. Wurtman and J. J. Wurtman, “Carbohydrate craving, obesity and brain serotonin,” Appetite, 7, 99-103 (1986).

    Article  CAS  Google Scholar 

  13. Y. Jia, M. El-Haddad, A. Gendy, et al., “Serotonininduced region-specific responses of the arcuate and ventromedial hypothalamic nuclei,” Int. J. Neurosci., 120, No. 5, 386-395 (2010).

    Article  CAS  Google Scholar 

  14. T. Gupta, D. Sahni, R. Gupta, et al., “Expanding the horizons of melatonin use: An immunohistochemical neuroanatomic distribution of MT1 and MT2 receptors in human brain and retina,” J. Anatom. Soc. India, 66, No. 1, 58-66 (2017).

    Article  Google Scholar 

  15. C. Fischer, T. Mueller, M. Pfeffer, et al., “Melatonin receptor 1 deficiency affects feeding dynamics and proopiomelanocortin expression in the arcuate nucleus and pituitary of mice,” Neuroendocrinology, 105, No. 1, 35-43 (2017).

    Article  CAS  Google Scholar 

  16. M. J. Ríos-Lugo, V. Jiménez-Ortega, P. Cano-Barquilla, et al., “Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats,” Horm. Molec. Biol. Clin. Invest., 21, No. 3, 175-183 (2015).

    Google Scholar 

  17. B. Djordjevic, T. Cvetkovic, T. J. Stoimenov, et al., “Oral supplementation with melatonin reduces oxidative damage and concentrations of inducible nitric oxide synthase, VEGF and matrix metalloproteinase 9 in the retina of rats with streptozotocin/nicotinamide induced pre-diabetes,” Eur. J. Pharmacol., 833, 290-297 (2018).

    Article  CAS  Google Scholar 

  18. A. Agil, M. Navarro-Alarcón, R. Ruiz, et al., “Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats,” J. Pineal Res., 50, No. 2, 207-212 (2011).

    CAS  PubMed  Google Scholar 

  19. K. Angers, N. Haddad, B. Selmaoui, et al., “Effect of melatonin on total food intake and macronutrient choice in rats,” Physiol. Behav., 80, No. 1, 9-18 (2003).

    Article  CAS  Google Scholar 

  20. M. Kassayová, M. Marková, B. Bojková, et al., “The influence of long-term melatonin administration on basic physiological and metabolic variables of young Wistar Han rats,” Biologia, 61, No. 3, 313-320 (2006).

    Article  Google Scholar 

  21. P. Cano Barquilla, E. S. Pagano, V. Jiménez-Ortega, et al., “Melatonin normalizes clinical and biochemical parameters of mild inflammation in diet-induced metabolic syndrome in rats,” J. Pineal Res., 57, No. 3, 280-290 (2014).

    Article  CAS  Google Scholar 

  22. G. Fernández Vázquez, R. J. Reiter, and A. Agil, “Melatonin increases brown adipose tissue mass and function in Zücker diabetic fatty rats: implications for obesity control,” J. Pineal Res., 64, No. 4, e12472 (2018).

  23. C. Y. Demirtas, O. T. Pasaoglu, F. S. Bircan, et al., “The investigation of melatonin effect on liver antioxidant and oxidant levels in fructose-mediated metabolic syndrome model,” Eur. Rev. Med. Pharmacol. Sci, 19, No. 10, 1915-1921 (2015).

    CAS  PubMed  Google Scholar 

  24. J. T. Laitinen, E. Castren, O. Vakkuri, et al., “Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus,” Endocrinology, 124, No. 3, 1585-1587 (1989).

    Article  CAS  Google Scholar 

  25. D. Acuña-Castroviejo, R. J. Reiter, A. Menendez-Pelaez, et al., “Characterization of high-affinity melatonin binding sites in purified cell nuclei of rat liver,” J. Pineal Res., 16, No. 2, 100-112 (1994).

    Article  Google Scholar 

  26. M. J. Gerdin, M. I. Masana, M. A. Rivera-Bermúdez, et al., “Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin,” FASEB J., 18, No. 14, 1646-1656 (2004).

    Article  CAS  Google Scholar 

  27. R. Dallmann, A. B. Steven, and F. Gachon, “Chronopharmacology: new insights and therapeutic implications,” Annu. Rev. Pharmacol. Toxicol., 54, 339-361 (2014).

    Article  CAS  Google Scholar 

  28. H. McKenna, G. T. van der Horst, I. Reiss, et al., “Clinical chronobiology: a timely consideration in critical care medicine,” Crit. Care, 22, No. 124, 1-10 (2018).

    Article  Google Scholar 

  29. K. A. Dyar, and L. E-M. Kristin, “Circadian Metabolomics in Time and Space.” Front. Neurosci., 11, No. 369, 1-10 (2017).

    Google Scholar 

  30. X. H. Shen, Q. Y. Tang, J. Huang, et al., “Vitamin E regulates adipocytokine expression in a rat model of dietary-induced obesity,” Exp. Biol. Med., 235, No. 1, 47-51 (2010).

    Article  Google Scholar 

  31. O. Kalmukova, A. Pustovalov, I. Vareniuk, et al., “Effect of melatonin different time administration on the development of diet-induced obesity in rats,” Bull. Taras Shevchenko Natl. Univ. Probl. Physiol. Funct. Regul., 23, No. 2, 20-27 (2018).

    Google Scholar 

  32. B. Falck, N. Å. Hillarp,, G. Thieme, et al., “Fluorescence of catecholamines and related compounds condensed with formaldehyde,” J. Histochem. Cytochem., 10, No. 3, 348-354 (1962).

    Article  CAS  Google Scholar 

  33. J. B. Furness, M. Costa, and A. J. Wilson, “Water-stable fluorophores, produced by reaction with aldehyde solutions, for the histochemical localization of catechol-and indolethylamines,” Histochemistry, 52, No. 2, 159-170 (1977).

    Article  CAS  Google Scholar 

  34. J. B. Furness, J. W. Heath, and M. Costa, “Aqueous aldehyde (Faglu) methods for the fluorescence histochemical localization of catecholamines and for ultrastructural studies of central nervous tissue,” Histochemistry, 57, No. 4, 285-295 (1978).

    Article  CAS  Google Scholar 

  35. N. G. M. Wreford, W. Singhaniyom, and G. C. Smith, “Microspectrofluorometric characterization of the fluorescent derivatives of biogenic amines produced by aqueous aldehyde (FAGLU) fixation,” Histochem. J., 14, No. 3, 491-505 (1982).

    Article  CAS  Google Scholar 

  36. I. Lorén, A. Björklund, B. Falck, et al., “An improved histofluorescence procedure for freeze-dried paraffinembedded tissue based on combined formaldehydeglyoxylic acid perfusion with high magnesium content and acid pH,” Histochemistry, 49, No. 3, 177-192 (1976).

    Article  Google Scholar 

  37. I. Lorén, A. Björklund, B. Falck, et al., “The aluminumformaldehyde (ALFA) histofluorescence method for improved visualization of catecholamines and indoleamines. 1. A detailed account of methodology for central nervous tissue using paraffin, cryostat or vibratome sections,” J. Neurosci. Methods, 2, No. 3, 277-300 (1980).

    Article  Google Scholar 

  38. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, New York, 1998.

    Google Scholar 

  39. M. K. Gaitonde, “A fluorimetric method for the determination of tryptophan in animal tissues,” Biochem. J., 139, No. 3, 625-631 (1974).

    Article  CAS  Google Scholar 

  40. H. Weissbach, T. P. Waalkes, and S. Udenfriend, “A simplified method for measuring serotonin in tissues; simultaneous assay of both serotonin and histamine,” J. Biol. Chem, 230, No. 2, 865-871 (1958).

    CAS  PubMed  Google Scholar 

  41. L. Valzelli and S. Bernasconi, “Aggressiveness by isolation and brain serotonin turnover changes in different strains of mice,” Neuropsychobiology, 5, No. 3, 129-135 (1979).

    Article  CAS  Google Scholar 

  42. Y. M. Wei, Y. Xu, C. X. Yu, et al., “Melatonin enhances the expression of beta-endorphin in hypothalamic arcuate nucleus of morphine-dependent mice,” Sheng Li Xue Bao, 61, 255-262 (2009).

    CAS  PubMed  Google Scholar 

  43. M. Conde-Sieira, M. Librán-Pérez, M. A. L. Patiño, et al., “Melatonin treatment alters glucosensing capacity and mRNA expression levels of peptides related to food intake control in rainbow trout hypothalamus,” Gen. Comp. Endocrinol., 178, No. 1, 131-138 (2012).

    Article  CAS  Google Scholar 

  44. M. J. Ríos-Lugo, V. Jiménez-Ortega, P. Cano-Barquilla, et al., “Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats,” Horm. Molec. Biol. Clin. Invest., 21, No. 3, 175-183 (2015).

    Google Scholar 

  45. D. Bruns, D. Riedel, J. Klingauf, et al., “Quantal release of serotonin,” Neuron, 28, No. 1, 205-220 (2000).

    Article  CAS  Google Scholar 

  46. K. A. van Galen, K. W. Ter Horst, J. Booij, et al., “The role of central dopamine and serotonin in human obesity: lessons learned from molecular neuroimaging studies,” Metabolism, 85, 325-339 (2017).

    Article  Google Scholar 

  47. M. Hasan, J. E. Seo, K. A. Rahaman, et al., “Increased levels of brain serotonin correlated with MMP-9 activity and IL-4 levels resulted in severe experimental autoimmune encephalomyelitis (EAE) in obese mice,” Neuroscience, 319, 168-182 (2016).

    Article  CAS  Google Scholar 

  48. C.-M. Oh, S. Park, and H. Kim, “Serotonin as a new therapeutic target for diabetes mellitus and obesity,” Diabet. Metab. J., 40, No. 2, 89-98 (2016).

    Article  Google Scholar 

  49. K. E. Koopman, J. Booij, E. Fliers, “Diet-induced changes in the Lean Brain: Hypercaloric high-fat-high-sugar snacking decreases serotonin transporters in the human hypothalamic region,” Mol. Metabol., 2, No. 4, 417-422 (2013).

    Article  CAS  Google Scholar 

  50. G.-L. Chen, and G. M. Miller, “Advances in tryptophan hydroxylase-2 gene expression regulation: New insights into serotonin–stress interaction and clinical implications,” Am. J. Med. Genet. Part B: Neuropsychiatr. Genet., 159, No. 2, 152-171 (2012).

    Article  CAS  Google Scholar 

  51. S. Krishna, Z. Lin, B. Claire, et al., “Time-dependent behavioral, neurochemical, and metabolic dysregulation in female C57BL/6 mice caused by chronic high-fat diet intake,” Physiol. Behav., 157, 196-208 (2016).

    Article  CAS  Google Scholar 

  52. R. I. Versteeg, A. Schrantee, S. M. Adriaanse, et al., “Timing of caloric intake during weight loss differentially affects striatal dopamine transporter and thalamic serotonin transporter binding,” FASEB J., 31, No. 10, 4545-4554 (2017).

    Article  CAS  Google Scholar 

  53. D. X. Tan, L. C. Manchester, L. Fuentes-Broto, et al., “Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity,” Obes. Rev., 12, No. 3, 167-188 (2011).

    Article  CAS  Google Scholar 

  54. A. Jiménez-Aranda, G. Fernández-Vázquez, D. Campos, et al., “Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats,” J. Pineal Res., 55, No. 4, 416-423 (2013).

    PubMed  Google Scholar 

  55. B. Thyagarajan,, and M. T. Foster, “Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans,” Horm. Mol. Biol. Clin. Invest., 31, No. 2, (2017).

  56. D. Bonnefont-Rousselot, “Obesity and oxidative stress: potential roles of melatonin as antioxidant and metabolic regulator,” Endocr. Metab. Immune Disord. Drug Targets, 14, No. 3, 159-168 (2014).

    Article  CAS  Google Scholar 

  57. N. J. Prado, L. Ferder, W. Manucha, et al., “Anti-inflammatory effects of melatonin in obesity and hypertension,” Curr. Hypertens. Rep., 20, No. 5, 45-52 (2018).

    Article  Google Scholar 

  58. K. Szewczyk-Golec, P. Rajewski, M. Gackowski, et al., “Melatonin supplementation lowers oxidative stress and regulates adipokines in obese patients on a calorie-restricted diet,” Oxid. Med. Cell. Longev., 8494107 (2017).

  59. P. Xu, J. Wang, F. Hong, et al., “Melatonin prevents obesity through modulation of gut microbiota in mice,” J. Pineal Res., 62, No. 4, e12399 (2017).

  60. S. Carmo-Silva, and C. Cavadas, “Hypothalamic dysfunction in obesity and metabolic disorders,” Obes. Brain Funct. Adv. Neurobiol., 19, 73-116 (2017).

    Article  Google Scholar 

  61. M. H. Okuda, J. C. Zemdegs, A. A. de Santana, et al., “Green tea extract improves high fat diet-induced hypothalamic inflammation, without affecting the serotoninergic system,” J. Nutr. Biochem., 25, No. 10, 1084-1089 (2014).

    Article  CAS  Google Scholar 

  62. A. Rubio-González, J. C. Bermejo-Millo, B. de Luxán-Delgado, et al., “Melatonin prevents the harmful effects of obesity on the brain, including at the behavioral level,” Mol. Neurobiol., 55, No. 7, 5830–5846 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Kalmukova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmukova, O.O., Yurchenko, A.V., Kyryk, V.M. et al. Effects of Melatonin Administration in Different Time Modes on Morphofunctional Indices of the Hypothalamic Serotonergic Neurons in Obese Rats. Neurophysiology 50, 398–408 (2018). https://doi.org/10.1007/s11062-019-09771-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09771-2

Keywords

Navigation