Skip to main content
Log in

Molecular Docking of Phenylethylamine and CGP54626 to an Extracellular Domain of the GABAB-Receptor

  • Published:
Neurophysiology Aims and scope

Molecular docking of the extracellular domain of the GABAB1a subunit (whose spatial structure was identified by molecular simulation of a full-size GABAB receptor) with the GABA antagonists phenylethylamine and CGP54626 was examined. The spatial structure of the molecules of the above antagonists was obtained using the PubChem database of chemical compounds and mixtures. Detection and analysis of the interaction sites of phenylethylamine with the extracellular domain of subunit GABAB1а of the GABAB receptor was performed using the SwissDock web-service. Docking results were estimated using the FullFitness parameter and free energy analysis of binding of the antagonists to the receptor. The results of molecular docking of phenylethylamine and CGP54626 to the extracellular domain of subunit GABAB1a of the GABAB receptor, as well as a comparative analysis of these data with the results of molecular docking of baclofen to the mentioned receptor, have demonstrated that all binding sites for both antagonists and agonist, located either under or in the “claws” of the subunit molecule, are completely or partially structured by specific groups of amino acid residues. The sites differ from each other in their molecular volumes and density of filling with the above residues. According to the mentioned estimated parameters, the binding sites for baclofen, phenylethylamine, and CGP54626 located in the claws have higher motility and binding energy than similar sites positioned under the claws. In the latter case, the respective sites have higher “rigidity” and lower motility. It has been revealed that the main principle of forming the binding sites for antagonists is the formation of the main matrix elements of baclofen-binding sites located under the claws or in the latter, respectively, with subsequent creation of new groups of amino acids and/or supplying the existing ones with additional amino acid residues. As for antagonist/agonist binding sites, this process is likely to occur via the hydrogen bonds with the constituents of the former, namely amino acid residues threonine and serine, which are the most reaction-capable ones due to their hydroxylic groups. It has been assumed that one of the possible mechanisms of conformation-dependent impact of baclofen-, phenylethylamine-, and CGP54626-binding sites under the claws on the formation of sites to these compounds in the claws is based on the fact that agonist/antagonist-activated transfers of “rigidly”-packed sites, located under the claws and causing conformational transformations of polypeptide chains, are realized, in general, for greater distances. Stabilization of interaction between such sites is likely to occur via the formation of bonds between cations (positively charged radicals of polar charged amino acids in the sites under the claws) and π-electrons of aromatic rings of nonpolar and polar uncharged amino acids in the sites located in the claws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Jembrek and J. Vlainic, “GABA receptors: pharmacological potential and pitfalls,” Curr. Pharm. Des., 21, No. 34, 4943-4959 (2015).

    Article  CAS  Google Scholar 

  2. B. Bettler, K. Kaupmann, J. Mosbacher, and M. Gassmann, “Molecular structure and physiological functions of GABA(B) receptors,” Physiol. Rev., 84, No. 3, 835-867 (2004).

    Article  CAS  Google Scholar 

  3. N. G. Bowery and G. D. Pratt, “GABAB receptors as targets for drug action,” Arzneimittelforschung, 42, No. 2A, 215-223 (1992).

    CAS  PubMed  Google Scholar 

  4. A. Bouron, “Modulation of spontaneous quantal release of neurotransmitters in the hippocampus,” Prog. Neurobiol., 63, No. 6, 613-635 (2001).

    Article  CAS  Google Scholar 

  5. J. H. White, A. Wise, M. J. Main, et al., “Heterodimerization is required for the formation of a functional GABAB receptor,” Nature, 396, No. 6712, 679-682 (1998).

    Article  CAS  Google Scholar 

  6. N.G. Bowery, B. Bettler, W. Froestl, et al., “International Union of Pharmacology. XXXIII. Mammalian gammaaminobutyric acid(B) receptors: structure and function,” Pharmacol. Rev., 54, No. 2, 247-264 (2002).

    Article  CAS  Google Scholar 

  7. Y. Geng, M. Bush, L. Mosyak, et al., “Structural mechanism of ligand activation in human GABA(B) receptor,” Nature, 504, No. 7479, 254-259 (2013).

    Article  CAS  Google Scholar 

  8. J.P. Pin, J. Kniazeff, V. Binet, et al., “Activation mechanism of the heterodimeric GABA(B) receptor,” Biochem. Pharmacol., 68, No. 8, 1565-1572 (2004).

    Article  CAS  Google Scholar 

  9. Y. Geng, D. Xiong, L. Mosyak, et al., “Structure and functional interaction of the extracellular domain of human GABA(B) receptor GBR2,” Nat. Neurosci., 15, No. 7, 970-978 (2012).

    Article  CAS  Google Scholar 

  10. J. Liu, D. Maurel, S. Etzol, et al., “Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit,” J. Biol. Chem., 279, No. 16, 15824-15830 (2004).

    Article  CAS  Google Scholar 

  11. P. Rondard, S. Huang, C. Monnier, et al., “Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning,” EMBO J., 27, No. 9, 1321-1332 (2008).

    Article  CAS  Google Scholar 

  12. B. A. Clark and S. G. Cull-Candy, “Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse,” J. Neurosci., 22, No. 11, 4428-4436 (2002).

    Article  CAS  Google Scholar 

  13. J. P. Pin, J. Kniazeff, C. Goudet, et al., “The activation mechanism of class-C G-protein coupled receptors,” Biol. Cell., 96, No. 5, 335-342 (2004).

    Article  CAS  Google Scholar 

  14. R. Cossart, M. Esclapez, J. C. Hirsch, et al., “GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells,” Nat. Neurosci., 1, No. 6, 470-478 (1998).

    Article  CAS  Google Scholar 

  15. R. Cossart, J. Epsztein, R. Tyzio, et al., “Quantal release of glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons,” Neuron, 35, No. 1, 147-159 (2002).

    Article  CAS  Google Scholar 

  16. B. Duthey, S. Caudron, J. Perroy, et al., “A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor,” J. Biol. Chem., 277, No. 5, 3236-3241 (2002).

    Article  CAS  Google Scholar 

  17. M. Havlickova, L. Prezeau, B. Duthey, et al., “The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric gammaaminobutyrate B receptor,” Mol. Pharmacol., 62, No. 2, 343-350 (2002).

    Article  CAS  Google Scholar 

  18. K. A. Jones, B. Borowsky, J. A. Tamm, et al., “GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2,” Nature, 396, No. 6712, 674-679 (1998).

    Article  CAS  Google Scholar 

  19. H.-C. Kornau, “GABAB receptors and synaptic modulation,” Cell Tissue Res., 326, No. 2, 517-533 (2006).

    Article  CAS  Google Scholar 

  20. A. Yu. Nyporko, A. M. Naumenko, A. Golius, et al., “3D reconstruction of a full-size GABAB receptor,” Neurophysiology, 47, No. 5, 364-375 (2015).

    Article  CAS  Google Scholar 

  21. A. M. Naumenko, L. M. Shapoval, A. Yu. Nyporko, et al., “Computer simulation of molecular interaction between baclofen and the GABAB receptor,” Neurophysiology, 49, No. 1, 2-7 (2017).

    Article  CAS  Google Scholar 

  22. M. D. Berry, “The effects of pargyline and 2-phenylethylamine on D1-like dopamine receptor binding,” J. Neural. Transm., 118, No. 7, 1115-1118 (2011).

    Article  CAS  Google Scholar 

  23. R. L. O’Reilly and B. A. Davis, “Phenylethylamine and schizophrenia,” Prog. Neuropsychopharmacol. Biol. Psychiat., 18, No. 1, 63-75 (1994).

    Article  Google Scholar 

  24. F. Brugger, U. Wicki, H. R. Olpe, et al., “The action of new potent GABAB receptor antagonists in the hemisected spinal cord preparation of the rat,” Eur. J. Pharmacol., 235, No. 1, 153-155 (1993).

    Article  CAS  Google Scholar 

  25. M. J. Asay and S. K. Boyd, “Characterization of the binding of [3H]CGP54626 to GABAB receptors in the male bullfrog (Rana catesbeiana),” Brain Res., 1094, No. 1, 76-85 (2006).

    Article  CAS  Google Scholar 

  26. S. Kim, P. A. Thiessen, E. E. Bolton, et al., “PubChem substance and compound databases,” Nucleic. Acids Res., 44, No. D1, 1202-1213 (2016).

    Article  Google Scholar 

  27. Y. Wang, T. Suzek, J. Zhang, et al., “PubChem BioAssay: 2014 update,” Nucleic. Acids Res., 42(Database issue), D1075–D1082 (2014).

    Article  CAS  Google Scholar 

  28. A. Grosdidier, V. Zoete, and O. Michielin, “SwissDock, a protein-small molecule docking web service based on EADock DSS,” Nucleic. Acids Res., 39 (Web Server issue), W270-W277 (2011).

    Article  CAS  Google Scholar 

  29. A. Grosdidier, V. Zoete, and O. Michielin, “Fast docking using the CHARMM force field with EADock DSS,” J. Comput. Chem., 32, No. 10, 2149-2159 (2011).

    Article  CAS  Google Scholar 

  30. V. Zoete, M. A. Cuendet, A. Grosdidier, and O. Michielin, “SwissParam, a fast force field generation tool for small organic molecules,” J. Comput. Chem., 32, No. 11, 2359-2368 (2011).

    Article  CAS  Google Scholar 

  31. R. S. Spolar, J. R. Livingstone, and M. T. Record, Jr., “Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water,” Biochemistry, 31, No. 16, 3947-3955 (1992).

    Article  CAS  Google Scholar 

  32. K. T. О’Neil and W. F. DeGrado, “A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids,” Science, 250, No. 4981, 646-651 (1990).

    Article  Google Scholar 

  33. K. A. Dill, “Dominant forces in protein folding,” Biochemistry, 29, No. 31, 7133-7155 (1990).

    Article  CAS  Google Scholar 

  34. C. R. Cantor and P. R. Schimmel, Biophysical Chemistry, Part 1. The Conformation of Biological Macromolecules (Their Biophysical Chemistry; pt. 1), W. H. Freeman (Publ.) (1984).

  35. M. Tomita and V. T. Marchesi, “Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin,” Proc. Natl. Acad. Sci. USA, 72, No. 8, 2964-2968 (1976).

    Article  Google Scholar 

  36. R. Aurora, T. P. Creamer, R. Srinivasan, and G. D. Rose, “Local interaction in protein folding: lessons from the α-helix,” J. Biol. Chem., 272, No. 3, 1413-1416 (1997).

    Article  CAS  Google Scholar 

  37. F. M. Richards, “The interpretation of protein structures: total volume, group volume distributions and packing density,” J. Mol. Biol., 82, No. 1, 1-14 (1974).

    Article  CAS  Google Scholar 

  38. W. Kauzmann, K. Moore, and D. Schultz, “Protein densities from X-ray crystallographic coordinates,” Nature, 248, No. 447, 447-449 (1974).

    Article  CAS  Google Scholar 

  39. J. P. Gallivan and D. A. Dougherty, “A computational study of cation–π interactions vs. salt bridges in aqueous media: Implications for protein engineering,” J. Am. Chem. Soc., 122, No. 5, 870-874 (2000).

    Article  CAS  Google Scholar 

  40. I. N. Mezhevoy and V. G. Badelin, “Dissolution and solvation enthalpies of L-serine in aqueous-alcoholic solutions at 298.15 K,” J. Phys. Chem., 82, No. 4, 789-791 (2008) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Naumenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumenko, A.M., Shapoval, L.M., Davydovska, T.L. et al. Molecular Docking of Phenylethylamine and CGP54626 to an Extracellular Domain of the GABAB-Receptor. Neurophysiology 50, 230–242 (2018). https://doi.org/10.1007/s11062-018-9743-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-018-9743-1

Keywords

Navigation