Skip to main content
Log in

Effects of Gonadectomy and Avoidance Learning on the GABAAα1 Receptor Density in the Prefrontal Cortex of Male and Female Rats

  • Published:
Neurophysiology Aims and scope

We evaluated the effects of gonadectomy and passive avoidance learning on the density of GABAAα1 receptors in the prefrontal cortex of male and female rats. Twenty adult males weighing 200 ± 30 g and 20 adult females weighing 150 ± 20 g were divided into four groups: (i) Sham, intact rats with no learning session, (ii) Sham-L, intact rats subjected to the avoidance learning session, (iii) GE, gonadectomized rats without learning, and (iv) GE-L, gonadectomized rats with learning. A shuttle box was used for the induction of passive avoidance learning. The density of GABAAα1 receptors was investigated with an immunohistochemical technique; Image Analyzer software was used. Ovariectomy without learning led to significant reduction of the density of GABAAα1 receptors in different regions of the prefrontal cortex relative to the control intact group; at the same time, ovariectomized females with learning demonstrated a significantly higher density of GABAAα1 receptors in the prefrontal cortex as compared to the Sham group. No significant differences in the density of GABAAα1 receptors were observed in both castrated male rat groups. The comparison of male and female rats showed that the density of GABAAα1 receptors in castrated rats with learning was significantly lower than that in ovariectomized females with learning. Thus, ovariectomy exerts a more potent effect than castration on the GABAAα1 receptor density in different regions of the prefrontal cortex. Learning provides increases in the GABAAα1 receptor density in different regions of the prefrontal cortex in female rats, while castration of male rats exerts no significant effect from this aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ravizza, A. S. Galanopoulou, J. Veliskova, and S. L. Moshe, “Sex differences in androgen and estrogen receptor expression in rat substantia nigra during development: an immunohistochemical study,” Neuroscience, 115, 685-696 (2002).

  2. L. Andreen, S. Nyberg, S. Turkmen, et al., “Sex steroid induced negative mood may be explained by the paradoxical effect mediated by GABAA modulators,” Psychoneuroendocrinology, 34, 1121-1132 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. G. A. Johnston, “GABA(A) receptor channel pharmacology,” Current Pharm. Des., 11, 1867-1885 (2005).

    Article  CAS  Google Scholar 

  4. S. R. Makkar, S. Q. Zhang, and J. Cranney, “Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory,” Neuropsychopharmacology, 35, 1625-1652 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K. J. Skilbeck, G. A. Johnston, and T. Hinton, “Stress and GABA receptors,” J. Neurochem., 112, 1115-1130 (2009).

    Article  PubMed  Google Scholar 

  6. D. S. Reddy, “Neurosteroids: endogenous role in the human brain and therapeutic potentials,” Prog. Brain Res., 186, 113-137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. Di Cristo, T. Pizzorusso, L. Cancedda, and E. Sernagor, “GABAergic circuit development and its implication for CNS disorders,” Neural Plast., 2011, 1-2 (2011).

    Article  Google Scholar 

  8. L. Parsaei, M. Rangchiyan, S. Ahmadi, and M. R. Zarrindast, “GABAA receptors in the dorsal hippocampus are involved in sate-dependent learning induced by lithium in mice,” Iran J. Pharm. Res., 10, 127-134 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Y. Fong, R. L. Stornetta, C. M. Foley, and J. T. Potts, “Immunohistochemical localization of GAD67-expressing neurons and processes in the rat brainstem: subregional distribution in the nucleus tractus solitarius,” J. Comp. Neurol., 493, 274-290 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. K. Terai, I. Tooyama, and H. Kimura, “Immunohistochemical localization of GABAA receptors in comparison with GABA-immunoreactive structures in the nucleus tractus solitarii of the rat,” Neuroscience, 82, 843-852 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. C. A. Frye, K. L. Edinger, A. M. Selige, and J. M. Wawrzycki, “5alpha-reduced androgens may have actions in the hippocampus to enhance cognitive performance of male rats,” Psychoneuroendocrinology, 29, 1019-1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. E. Hampson, “Spatial cognition in humans: possible modulation by androgens and estrogens,” J. Psychol. Neurosci., 20, 397-404 (1995).

    CAS  Google Scholar 

  13. E. Goudsmith, N. E. Van de Poll, and D. F. Swaab, “Testosterone fails to reverse spatial memory decline in aged rats and impairs retention in young and middleaged animals,” Behav. Neural. Biol., 53, 6-20 (1990).

    Article  Google Scholar 

  14. G. Mohaddes, N. Naghdi, S. Khamnei, et al., “Effect of spatial learning on hippocampal testosterone in intact and castrated male rats,” Iran Biomed. J., 13, 49-58 (2009).

    PubMed  Google Scholar 

  15. L. A. Galea, M. Kavaliers, K. P. Ossenkopp, and E. Hampson, “Gonadal hormone levels and spatial learning performance in the Morris water maze in male and female meadow voles, Microtus pennsylvanicus,” Hormon Behav., 29, 106-125 (1995).

    Article  CAS  Google Scholar 

  16. J. Su, K. Sripanidkulchai, J. M. Wyss, and B. Sripanidkulchai, “Curcuma comosa improves learning and memory function on ovariectomized rats in a longterm Morris water maze test,” J. Ethnopharmacol., 130, 70-75 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. D. M. Davis, T. K. Jacobson, S. Aliakbari, and S. J. Mizumori, “Differential effects of estrogen on hippocampal- and striatal-dependent learning,” Neurobiol. Learn. Memory, 84, 132-137 (2005).

    Article  CAS  Google Scholar 

  18. J. Su, K. Sripanidkulchai, Y. Hu, et al., “The effect of ovariectomy on learning and memory and relationship to changes in brain volume and neuronal density,” Int. J. Neurosci., 122, 549-559 ( 2012 ).

    Article  PubMed  Google Scholar 

  19. C. M. Carver and D. S. Reddy, “Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability,” Psychopharmacology, 230, 151-188 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. B. Luscher, Q. Shen, and N. Sahir, “The GABAergic deficit hypothesis of major depressive disorder,” Mol. Psychiat., 16, 383-406 (2011).

    Article  CAS  Google Scholar 

  21. M. Canonaco, R. Tavolaro, M. C. Cerra, et al., “Gonadal regulation of GABAA receptors in the different brain areas of the male Japanese quail,” Exp. Brain Res., 87, 634-640 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. M. D. Majewska, “Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance,” Prog. Neurobiol., 38, 379-395 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. M. J. Yoo, R. V. Searles, J. R. He, et al., “Castration rapidly decreases hypothalamic gamma-aminobutyric acidergic neuronal activity in both male and female rats,” Brain Res., 878, 1-10 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Y. Ago, S. Hasebe, N. Hiramatsu, et al., “Involvement of GABAA receptors in 5-HT1A and σ1 receptor synergism on prefrontal dopaminergic transmission under circulat ing neuroster o id def iciency, ” Psychopharmacology, 233, 3125-3134 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. X. Wu, O. Gangisetty, C. M. Carver, and D. S. Reddy, “Estrous cycle regulation of extrasynaptic δ-containing GABA(A) receptor-mediated tonic inhibition and limbic epileptogenesis,” J. Pharmacol. Exp. Ther., 346, No. 1, 146-160 (2013 ).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Juptner, A. Jussofie, and C. Hiemke, “Effects of ovariectomy and steroid replacement on GABAA receptor binding in female rat brain,” J. Steroid Biochem. Mol. Biol., 38, 141-147 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. C. J. Scott and I. J. Clarke, “Inhibition of luteinizing hormone secretion in ovariectomized ewes during the breeding season by gamma-aminobutyric acid (GABA) is mediated by GABA-A receptors, but not GABA-B receptors,” Endocrinology, 132, 1789-1796 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. T. M. Saleh and B. J. Connell, “Estrogen-induced autonomic effects are mediated by NMDA and GABAA receptors in the parabrachial nucleus,” Brain Res., 973, 161-170 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. M. K. Akinci and G. A. Johnston, “Sex differences in the effects of gonadectomy and acute swim stress on GABAA receptor binding in mouse forebrain membranes,” Neurochem. Int., 31, 1-10 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. N. Naghdi and A. Asadollahi, “Genomic and nongenomic effects of intrahippocampal microinjection of testosterone on long-term memory in male adult rats,” Behav. Brain Res., 153, 1-6 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taherianfard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaee, A., Taherianfard, M. Effects of Gonadectomy and Avoidance Learning on the GABAAα1 Receptor Density in the Prefrontal Cortex of Male and Female Rats. Neurophysiology 49, 338–348 (2017). https://doi.org/10.1007/s11062-018-9693-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-018-9693-7

Keywords

Navigation