Skip to main content
Log in

Movement-Dependent Spatial Expansion of Visual Receptive Fields of Neurons of the Extrastriate Cortex

  • Published:
Neurophysiology Aims and scope

The spatial structure of the receptive field (RF) of a visually sensitive neuron, as defined by presentation of stationary visual stimuli, predetermines in most cases central processing of visual information concerning moving visual images. In our study, properties of a group of neurons in the extrastriate cortical area 21a (≈18% of the examined sampling) with extremely small RF sizes (≈1.5 deg2) determined by stationary visual stimuli were investigated. It was found that spatial dimensions of each neuronal RFs may undergo manifold expansions; the neuronal response profiles depended strongly on the size, shape, and contrast of the applied moving stimuli. As a result, a high degree of diversification of neuronal response patterns depending of the shapes and contrasts of applied moving stimuli was observed. These data confirm the suggestion that the RFs of neurons in the extrastriate area 21a undergo temporary dynamic changes due to activation of surrounding neuronal groups/networks by moving visual stimuli. Thus, it is evident that processing of visual information in the course of visual image recognition is realized by integrated activity of a complex of the corresponding cortical networks of visually sensitive neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Xing and G. J. Gerstein, “Networks with lateral connectivity. I. Dynamic properties mediated by the balance of intrinsic excitation and inhibition,” J. Neurophysiol., 75, No. 1, 184-199 (1996).

    CAS  PubMed  Google Scholar 

  2. J. Xing and G. J. Gerstein, “Networks with lateral connectivity. II. Development of neuronal grouping and corresponding receptive field changes,” J. Neurophysiol., 75, No. 1, 200-216 (1996).

    CAS  PubMed  Google Scholar 

  3. J. Xing and G. J. Gerstein, “Networks with lateral connectivity. III. Plasticity and reorganization of somatosensory cortex,” J. Neurophysiol., 75, No. 1, 217-232 (1996).

    CAS  PubMed  Google Scholar 

  4. H. Yao and C.-J. Li, “Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex,” Neuron, 35, No. 3, 547-553 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. D. J. Warren, A. Koulakov, and R. A. Normann, “Spatiotemporal encoding of a bar’s direction of motion by neural assembles in cat primary visual cortex,” Ann. Biomed. Eng., 32, No. 9, 1265-1275 (2004).

    Article  PubMed  Google Scholar 

  6. B. A. Harutiunian-Kozak, A. B. Sharanbekian, A. L. Ghazaryan, et al., “Spatial summation processes in the receptive fields of visually driven neurons of the cat’s cortical area 21a,” Arch. Ital. Biol., 144, No. 1, 1-20 (2006).

    Google Scholar 

  7. H. R. Aslanian, D. K. Khachvankian, B. A. Harutiunian-Kozak et al., “Receptive field stationary structure and response patterns to moving stimuli of visually driven neurons in extrastriate area 21a of cat cortex,” Natl. Acad. Sci. RA, Electr. J. Nat. Sci., 21, No. 2, 87-92 (2013).

    Google Scholar 

  8. L. Galli, L. Chalupa, L. Maffei, and S. Bisti, “The organization of receptive fields in area 18 neurons of the cat varies with the spatio-temporal characteristics of the visual stimulus,” Exp. Brain Res., 71, No. 1, 1-17 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. A. F. Rossi and M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus and striate cortex,” J. Neurosci., 19, No. 14, 6145-6156 (1999).

    CAS  PubMed  Google Scholar 

  10. R. D. Freeman, J. Ohzawa, and G. Walker, “Beyond the classical receptive field in the visual cortex,” Prog. Brain Res., 134, No. 1, 157-170 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. A. Angelucci, J. B. Levitt, E. J. S. Walton, et al., “Circuits for local and global signal integration in primary visual cortex,” J. Neurosci., 22, No. 19, 8633-8646 (2002).

    CAS  PubMed  Google Scholar 

  12. M. W. Pettet and C. D. Gilbert, “Dynamic changes in receptive field size in cat primary visual cortex,” Proc. Natl. Acad. Sci. USA, 89, No. 17, 8366-8370 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. U. Polat and D. Sagi, “Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments,” Vision Res., 33, No. 7, 993-999 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. A. Das and C. D. Gilbert, “Receptive fields expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections,” J. Neurophysiol., 74, No. 2, 779-792 (1995).

    CAS  PubMed  Google Scholar 

  15. U. T. Eysel, D. Eyding, and G. Schweigart, “Repetitive optical stimulation elicits fast receptive field changes in mature visual cortex,” NeuroReport, 9, No. 5, 949-954 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. H. R. Aslanian, B. A. Harutiunian-Kozak, D. K. Khachvankian, et al., “Motion detector neurons in area 21a of the cat cortex,” Natl. Acad. Sci. RA, Electr. J. Nat. Sci., 22, No. 1, 145-149 (2014).

    Google Scholar 

  17. D. K. Khachvankian, B. A. Harutiunian-Kozak, H. R. Aslanian et al., “Dynamic changes in receptive field sizes of visually sensitive neurons in extrastriate area 21a,” Natl. Acad. Sci. RA, Electr. J. Nat. Sci., 23, No. 2, 42-46 (2014).

    Google Scholar 

  18. R. J. Tusa and L. A. Palmer, “Retinotopic organization of areas 20 and 21 in the cat,” J. Comp. Neurol., 193, No. 1, 147-164 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. C. Wang, W. J. Waleszczyk, W. Burke, and B. Dreher, “Modulatory influence of feedback projections from area 21a on neuronal activities in striate cortex of the cat,” Cerebr. Cortex, 10, No. 12, 1217-1232 (2000).

    Article  CAS  Google Scholar 

  20. P. O. Bishop, W. Kozak, and G. J. Vakkur, “Some quantitative aspects of the cat’s eye: axis and plane reference, visual field co-ordinates and optics,” J. Physiol., 163, No. 3, 466-502 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Fernald and R. Chase, “An improved method for plotting retinal landmarks and focusing the eyes,” Vision Res., 11, No. 1, 95-96 (1971).

    Article  CAS  PubMed  Google Scholar 

  22. L. N. Thibos and W. R. Levick, “Bimodal receptive fields of cat retinal ganglion cells,” Vision Res., 23, No. 12, 1561-1572 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. J. I. Nelson and B. J. Frost, “Orientation selective inhibition from beyond the classic visual receptive field,” Brain Res., 139, No. 2, 359-365 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. C. D. Gilbert and T. N. Wiesel, “Columnar specificity of intrinsic horizontal and corticotectal connections in cat visual cortex,” J. Neurosci., 9, No. 7, 2432-2442 (1989).

    CAS  PubMed  Google Scholar 

  25. D. Eyding, G. Schweigart, and U. T. Eysel, “Spatiotemporal plasticity of cortical receptive fields in response to repetitive visual stimulation in the adult cat,” Neuroscience, 112, No. 1, 195-215 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. J. M. Ishida, L. Schwabe, P. C. Bressloff, and A. Angellucci, “Response facilitation from “suppressive” receptive field surround of macaque V1 neurons,” J. Neurophysiol., 98, No. 4, 2168-2181 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Khachvankian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslanian, H.R., Antonian, A.P., Harutiunian-Kozak, B.A. et al. Movement-Dependent Spatial Expansion of Visual Receptive Fields of Neurons of the Extrastriate Cortex. Neurophysiology 49, 44–52 (2017). https://doi.org/10.1007/s11062-017-9628-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9628-8

Keywords

Navigation