Skip to main content

Advertisement

Log in

Dynamics of the Electrographic Indices in Rats and Hamsters Recovering from Artificial and Natural Hypometabolic States

  • Published:
Neurophysiology Aims and scope

To induce an artificial hypometabolic state (AHMS) in rats and hamsters (non-hibernating and hibernating rodents, respectively), these animals were subjected to the complex action of hypoxia, hypercapnia, darkness, and low temperature. Natural winter hibernation was also induced in hamsters by housing them in a dark cold chamber. During recovering from the artificial and natural hypometabolic states, we recorded EEG activity (leads were implanted in the frontal and parietal cortices), EMG of the neck muscles, and body temperature. The initial period of self-heating after the AHMS in both species and that in hamsters after hibernation was characterized by low amplitudes of EEG and EMG and clearly pronounced depression of EEG oscillations of all frequency ranges, but with relative predominance of δ oscillations (the latter phenomenon may be partly due to superposition of ECG activity on EEG). In the course of further self-heating of animals, the EEG amplitude increased, and its spectral composition changed. The power of some EEG rhythms reached the maximum, and then the EEG composition was normalized successively beginning from the δ range; then the θ and α ranges and, finally, the βrange were normalized. We observed a certain parallelism between changes in the power of b activity in the composition of EEG and increase in the intensity of muscle activity. Patterns of EEG activity corresponding to one functional state or another (active or passive wakefulness, slow-wave sleep, or paradoxical sleep) were normalized in hamsters approximately two times faster than in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Melvin and M. T. Andrews, “Torpor induction in mammals: recent discoveries fuelling new ideas,” Trends Endocrinol. Metab., 20, 490-498 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. H. V. Carey, M. T. Andrews, and S. L. Martin, “Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature,” Physiol. Rev., 83, No. 4, 1153-1181 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. G. Heldmaier, S. Ortmann, and R. Elvert, “Natural hypometabolism during hibernation and daily torpor in mammals,” Respirat. Physiol. Neurobiol., 141, 317-329 (2004).

    Article  Google Scholar 

  4. S. F. Morrison and K. Nakamura, “Central neural pathways for thermoregulation,” Front. Biosci., 16, 74-104 (2011).

    Article  CAS  Google Scholar 

  5. K. L. Drew, C. L. Buck, B. M. Barnes, et al., “Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance,” J. Neurochem., 102, No. 6, 1713-1726 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Y. Tamura, M. Shintani, A. Nakamura, et al., “Phasespecific central regulatory systems of hibernation in Syrian hamsters,” Brain Res., 1045, 88-96 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. H. R. Bouma, E. M. Verhaag, J. P. Otis, et al., “Induction of torpor: mimicking natural metabolic suppression for biomedical applications,” J. Cell. Physiol., 227, 1285-1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. S. D. Mel’nichouk and D. O. Mel’nichouk, Hypobiosis of Animals (Molecular Mechanisms and Practical Importance for Agriculture and Medicine) [in Ukrainian], NAU, Kyiv (2007).

    Google Scholar 

  9. A. V. Shylo, V. V. Lomako, T. N. Bondar’, and G. A. Babiichouk, “Final metabolic products of nitric oxide under conditions of artificial hypometabolism in rats and hamsters,” Probl. Kriobiol., 15, No. 1, 3-13 (2005).

    Google Scholar 

  10. N. N. Timofeyev and L. P. Prokof’eva, Neurochemistry of Hypobiosis and Limits of Cryoresistance of the Organisms [in Russian], Meditsina, Moscow (1997).

    Google Scholar 

  11. D. A. Ignat’ev, R. Ya. Gordon, V. V. Vorob’iov, and V. V. Rogachevskii, “Comparative analysis of the processes of recovery of electroencephalographic and protein synthesis activity of the neocortex and hippocampus of winter-sleeping (susliks) and nonwinter-sleeping (rats) animals on coming out of hypothermia,” Biofizika, 50, No. 1, 140-151 (2005).

    PubMed  Google Scholar 

  12. Ecological Physiology of Animals [in Russian], Part 1, A. A. Slonim (Ed.), Nauka, Leningrad (1979).

  13. A. V. Shylo, V.V. Lomako, E. A. Ventsovskaya, and G. A. Babiichouk, “Bioelectrical activity of the rat brain and muscles on coming out of artificial hypometabolic state,” Probl. Kriobiol., 18, No. 3, 370-373 (2008).

    Google Scholar 

  14. M. B. Shtark, The Brain of Hibernators [in Russian], Nauka, Novosibirsk (1970).

    Google Scholar 

  15. A. V. Shylo, E. A. Ventsovskaya, and G. A. Babiichouk, “Change in the structure of sleep in rats after artificial hypometabolic state,” Probl. Kriobiol., 20, No. 1, 25-33 (2010).

    Google Scholar 

  16. H. Aihara, Y. Okada, and N. Tamaki, “The effects of cooling and rewarming on the neuronal activity of pyramidal neurons in guinea pig hippocampal slices,” Brain Res., 893, 36-45 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. A. M. Ivanitsky, A. R. Nikolaev, and G. A. Ivanitsky, “Electroencephalography (Chapter 35),” in: Modern Techniques in Neuroscience Research, U. Windhorst and H. Johansson (eds.), Springer-Verlag, Berlin, Heidelberg (1999), pp. 971-996.

    Chapter  Google Scholar 

  18. M. Steriade, P. Gloor, R. R. Llinas, et al., “Basic mechanisms of cerebral rhythmic activities,” Electroencephalogr. Clin. Neurophysiol., 76, 481-508 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. M. Penttonen and G. Buzsáki, “Natural logarithmic relationship between brain oscillators,” Thalamus Relat. Syst., 2, 145-152 (2003).

    Article  Google Scholar 

  20. P. Olejnicza, “Neurophysiologic basis of EEG,” J. Clin. Neurophysiol., 23, No. 3, 186-189 (2006).

    Article  Google Scholar 

  21. J. E. Larkin and H. C. Heller, “The disappearing slow wave activity of hibernators,” Sleep Res. Online, 1, No. 2, 96-101 (1998).

    CAS  PubMed  Google Scholar 

  22. J. H. Benington and H. C. Heller, “Restoration of brain energy metabolism as the function of sleep,” Prog. Neurobiol., 45, 347-360 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. T. Porkka-Heiskanen, A. Kalinchuk, L. Alanko, et al., “Adenosine, energy metabolism, and sleep,” Sci. World J., 3, 790-798 (2003).

    Article  Google Scholar 

  24. D. Ulrich and J. R. Huguenard, “Purinergic inhibition of GABA and glutamate release in the thalamus: implications for thalamic network activity,” Neuron, 15, 909-918 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. T. R. Jinka, Ø. Tøien, and K. L. Drew, “Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A1 receptors,” J. Neurosci., 31, 10752-10758 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. B. W. Iliff and S. J. Swoap, “Central adenosine receptor signalling is necessary for daily torpor in mice,” Am. J. Physiol. Regulat. Integrat. Comp. Physiol., 303, R477-R484 (2012).

    Article  CAS  Google Scholar 

  27. D. Tupone, C. J. Madden, and S. F. Morrison, “Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat,” J. Neurosci., 33, No. 36, 14512-14525 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. M. Muzzi, F. Blasi, A. Masi, et al., “Neurological basis of AMP-dependent thermoregulation and its relevance to central and peripheral hyperthermia,” J. Cerebr. Blood Flow Metab., 33, 83-190 (2013).

    Google Scholar 

  29. V. M. Pickel, J. Chan, J. Linden, and D. L. Rosin, “Subcellular distributions of adenosine A1 and A2A receptors in the rat dorsomedial nucleus of the solitary tract at the level of the area postrema,” Synapse, 60, 496-509 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. M. C. Andresen and D. L. Kunze, “Nucleus tractus solitarius - gateway to neural circulatory control,” Annu. Rev. Physiol., 56, 93-116 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. W. H. Cao, C. J. Madden, and S. F. Morrison, “Inhibition of brown adipose tissue thermogenesis by neurons in the ventrolateral medulla and in the nucleus tractus solitarius,” Am. J. Physiol. Regulat. Integrat. Comp. Physiol., 299, R277-R290 (2010.

    Article  CAS  Google Scholar 

  32. E. V. Golanov and D. J. Reis, “Neurons of nucleus of the solitary tract synchronize the EEG and elevate cerebral blood flow via a novel medullary area,” Brain Res., 892, 1-12 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. S. Yan, A. Laferrière, C. Zhang, and I. R. Moss, “Microdialyzed adenosine in nucleus tractus solitarii and ventilatory response to hypoxia in piglets,” J. Appl. Physiol., 79, 405-410 (1995).

    CAS  PubMed  Google Scholar 

  34. E. D. Martin, M. Fernández, G. Perea, et al., “Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission,” Glia, 55, 36-45 (2007).

    Article  PubMed  Google Scholar 

  35. S. Latini and F. Pedata, “Adenosine in the central nervous system: release mechanisms and extracellular concentrations,” J. Neurochem., 79, 463-484 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. K. Plaschke, D. Boeckler, H. Schumacher, et al., “Adenosine-induced cardiac arrest and EEG changes in patients with thoracic aorta endovascular repair,” Br. J. Anaesthesia, 96, No. 3, 310-316 (2006).

    Article  CAS  Google Scholar 

  37. G. Wassink, L. Bennet, J. O. Davidson, et al., “Preexisting hypoxia is associated with greater EEG activity during brief repeated asphyxia in near-term fetal sheep suppression and early onset of evolving seizure,” PLoS One, 8, No. 8, e73895 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. C. G. von der Ohe, C. Darian-Smith, C. C. Garner, and H. C. Heller, “Ubiquitous and temperature-dependent neural plasticity in hibernators,” J. Neurosci., 26, No. 41, 10590-10598 (2006).

    Article  PubMed  Google Scholar 

  39. A. M. Magarinǒs, B. S. McEwen, M. Saboureau, and P. Pevet, “Rapid and reversible changes in intrahippocampal connectivity during the course of hibernation in European hamsters,” Proc. Natl. Acad. Sci. USA, 103, No. 49, 18775-18780 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

  40. V. I. Popov and L. S. Bocharova, “Hibernation-induced structural changes in the synaptic contacts between mossy fibres and hippocampal pyramidal neurons,” Neuroscience, 48, 53-62 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. V. I. Popov, L. S. Bocharova, and A. G. Bragin, “Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation,” Neuroscience, 48, 45-51 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. I. Bendtson, J. Gade, A. M. Rosenfalck, et al., “Nocturnal electroencephalogram registrations in type I (insulindependent) diabetic patients with hypoglycaemia,” Diabetologia, 34, 750-756 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. W. D. Lust, A. B. Wheaton, G. Feussner, and J. Passonneau, “Metabolism in the hamster brain during hibernation and arousal,” Brain Res., 489, 12-20 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shylo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shylo, A.V. Dynamics of the Electrographic Indices in Rats and Hamsters Recovering from Artificial and Natural Hypometabolic States. Neurophysiology 47, 84–91 (2015). https://doi.org/10.1007/s11062-015-9502-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-015-9502-5

Keywords

Navigation