Skip to main content
Log in

Effect of Injury of the Cortico- and Rubro-Spinal Pathways on Operant Food-Procuring Reflexes in Cats

  • Published:
Neurophysiology Aims and scope

In experiments on cats with injury of the cortico- and rubro-spinal pathways, we studied the dynamics of recovery of operant (instrumental) food-procuring reactions at different durations of presurgery learning of animals. Operant manipulatory food-procuring movements were realized under conditions of horizontal and vertical tests, which required training for and support of a strictly defined pose in the course of performance of such movements and determined a specific pattern and stability of the coordinated motor phenomenon. The severity of abnormalities of operant food-procuring activity after transection of the lateral funiculus of the spinal cord at the level of С5-С6 and the time interval necessary for compensation of disorders of the developed manipulatory reaction depended significantly on the duration of presurgery motor learning and decreased considerably with increase in this duration. Such increase determined transformation of the pattern of postural rearrangement, which demonstrated no dependence on the amplitude and trajectory of the forthcoming operant phasic movements and was observed under conditions of both horizontal and vertical motor tests. Our results indicate that the main factor providing successful compensation of disorders of the developed operant habit in cats after injury of the cortico- and rubro-spinal pathways is active involvement of the tecto-and reticulo-spinal systems in the process of formation of the reflex. This can be due to an increase in the duration and intensity of presurgery learning of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Miklyaeva, E. I. Varlinskaya, M. E. Ioffe, et al., “Differences in the recovery rate of a learned forelimb movement after ablation of the motor cortex in right and left hemisphere in white rats,” Behav. Brain Res., 56, No. 2, 145-154 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. W. Werner, “Neurons in the primate superior colliculus are active before and during arm movements to visual targets,” Eur. J. Neurosci., 5, No. 4, 335-340 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Yu. V. Vasil’yeva, E. I. Varlinskaya, and E. S. Petrov, “Peculiarities of restoration of a key habit in albino rats depending on injury of the neocortex and initial motor preference,” Pavlov Zh. Vyssh. Nerv. Deyat., 45, No. 6, 362-369 (1995).

    Google Scholar 

  4. B. Alstermark, A. Lundberg, L. G. Pettersson, et al., “Motor recovery after serial spinal cord lesions of defined descending pathways in cat,” Neurosci. Res., 5, No. 1, 68-73 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. J. H. Martin and C. Ghez, “Red nucleus and motor cortex: parallel motor systems for the initiation and control of skilled movement,” Behav. Brain Res., 28, Nos. 1/2, 217-223 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. P. G. Kostyk, Structure and Function of Descending Systems of the Spinal Cord [in Russian], Nauka, Leningrad (1973).

    Google Scholar 

  7. I. B. Kozlovskaya, Afferent Control of Voluntary Movements [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  8. M. E. Ioffe, Mechanisms of Motor Learning [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  9. V. V. Fanardzhyan, O. V. Gevorkyan, R. K. Mallina, et al. “Dynamics of changes of instrumental reflexes in rats after transection of cortico-spinal tract and removal of the sensorimotor cortex,” Sechenov Ross. Fiziol Zh. , 87, No. 2, 145-154 (2001).

    Google Scholar 

  10. B. Alstermark, A. Lundberg, U. Norrsel, and E. Sybirska, “Integration in descending motor pathways controlling the forelimb in the cat,” Exp. Brain Res., 42, Nos. 3/4, 299-318 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. J. Bureš, O. Burešova, and J. Hewstone, Techniques and Basic Experiments for Studying the Brain and Behavior [Russian translation], A. S. Batuec (ed.), Vysshaya Shkola, Moscow (1991).

    Google Scholar 

  12. Y. Gahery, M. Ioffe, J. Massion, and A. Polit, “The postural support of movement in cat and dog,” Acta Neurobiol. Exp., 40, No. 4, 741-756 (1980).

    CAS  Google Scholar 

  13. H. G. J. M. Kuypers, “The descending pathways to the spinal cord: their anatomy and function,” Prog. Brain Res., 11, 178-202 (1964).

    Article  CAS  PubMed  Google Scholar 

  14. C. D. Marsden, “The mysterious motor functions of basal ganglia: The Robert Wartenberg lecture,” Neurology, 32, No. 5, 513-539 (1982).

    Article  Google Scholar 

  15. I. Q. Whishaw, J. A. Tomie, and R. L. Ladowsky, “Red nucleus lesions do not affect preference of use, but exacerbate the effect of motor cortex lesions on grasping in the rat,” Behav. Brain Res., 40, No. 2, 131-144 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. M. Kimura, T. Aosaki, Y. Hu, et al., “Activity of primate putamen neurons is selective to the mode of voluntary movements: visually guided, self-initiated or memoryguided,” Exp. Brain Res., 89, No. 3, 473-477 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. I. H. Jenkins, D. J. Brooks, P. D. Nixon, et al., “Motor sequence learning: a study with positron emission tomography,” J. Neurosci., 14, No. 6, 3775-3790 (1994).

    CAS  PubMed  Google Scholar 

  18. V. M. Moroz, N. V. Bratus’, O. V. Vlasenko, et al., “Organization of instrumental food-procuring movements in rats,” Pavlov Zh. Vyssh. Nerv. Deyat., 49, No. 2, 301-312 (1999).

    CAS  Google Scholar 

  19. G. E. Alexander and M. D. Crutcher, “Functional architecture of basal ganglia circuits: neural substrates of parallel proсessing,” Trends Neurosci., 13, No. 7, 266-272 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. T. W. Gardiner and R. J. Nelson, “Striatal neuronal activity during the initiation and execution of hand movements made in response to visual and vibratory cues,” Exp. Brain Res., 92, No. 1, 12-26 (1992).

    Article  Google Scholar 

  21. D. Jaeger, S. Gilman, and J. W. Aldridge, “Primate basal ganglia activity in a precued reaching task: preparation for movement,” Exp. Brain Res., 95, No. 1, 51-64 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. N. F. Suvorov, K. B. Shapovalova, and S. V. Albertin, “Involvement of the neostriatum in the mechanisms of instrumental behavior,” Pavlov Zh. Vyssh. Nerv. Deyat., 33, No. 2, 256-266 (1983).

    CAS  Google Scholar 

  23. N. F. Suvorov, S. V. Albertin, and N. L. Voilokova, “The neostriatum: neurophysiology and behavior,” Sov. Sci. Rev. F. Physiol. Gen. Biol., 2, 597-677 (1988).

    Google Scholar 

  24. S. V. Albertin, “Effect of stimulation of the DA-reactive systems of the striatum on instrumental food reflexes in cats,” in: Striatal System in the Norm and Pathology [in Russian], Nauka, Leningrad (1984), pp.14-20.

    Google Scholar 

  25. S. V. Albertin, “Involvement of the dopaminereactive system of the caudate nucleus in the control of instrumental conditioned reflexes of different complexities,” Sechenov Fiz. Zh., 71, No. 1, 87-94 (1985).

    CAS  Google Scholar 

  26. S. Yu. Budilin and V. N. Mats, “Recovery of motor habit after nucleus caudatus lesion in rats with different preference of forelimb,” Pavlov Zh. Vyssh. Nerv. Deyat., 51, No. 1, 123-127 (2001).

    Google Scholar 

  27. E. Lorincz and M. Fabre-Thorpe, “Effect of pairing red nucleus and motor thalamic lesions on reaching toward moving targets in cats,” Behav. Neurosci., 111, No. 5, 892-907 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. A. S. Batuev and O. P. Tairov, Brain and Organization of Movements [in Russian], Nauka, Leningrad (1976).

    Google Scholar 

  29. J. Hore, J. Meyer-Lohmann, and V. B. Brooks, “Basal ganglia cooling disables learned arm movements of monkeys in the absence of visual guidance,” Science, 195, No. 4, 584-586 (1977).

    Article  CAS  PubMed  Google Scholar 

  30. M. Roldan and A. Reinoso-Suarez, “Cerebellar projections to the superior colliculus in the cat,” J. Neurosci., 1, No. 8, 827-834 (1981).

    CAS  PubMed  Google Scholar 

  31. E. Olivier, A. Grantyn, M. Chat, and A. Berthoz, “The control of slow orienting movements by tectoreticulospinal neurons in the cat: behavior, discharge pattern and underlying connections,” Exp. Brain Res., 93, No. 3, 435-450 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Albertin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albertin, S.V. Effect of Injury of the Cortico- and Rubro-Spinal Pathways on Operant Food-Procuring Reflexes in Cats. Neurophysiology 46, 352–360 (2014). https://doi.org/10.1007/s11062-014-9455-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-014-9455-0

Keywords

Navigation