Skip to main content

Advertisement

Log in

Sexually dimorphic effect of H-ferritin genetic manipulation on survival and tumor microenvironment in a mouse model of glioblastoma

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Iron plays a crucial role in various biological mechanisms and has been found to promote tumor growth. Recent research has shown that the H-ferritin (FTH1) protein, traditionally recognized as an essential iron storage protein, can transport iron to GBM cancer stem cells, reducing their invasion activity. Moreover, the binding of extracellular FTH1 to human GBM tissues, and brain iron delivery in general, has been found to have a sex bias. These observations raise questions, addressed in this study, about whether H-ferritin levels extrinsic to the tumor can affect tumor cell pathways and if this impact is sex-specific.

Methods

To interrogate the role of systemic H-ferritin in GBM we introduce a mouse model in which H-ferritin levels are genetically manipulated. Mice that were genetically manipulated to be heterozygous for H-ferritin (Fth1+/-) gene expression were orthotopically implanted with a mouse GBM cell line (GL261). Littermate Fth1 +/+ mice were used as controls. The animals were evaluated for survival and the tumors were subjected to RNA sequencing protocols. We analyzed the resulting data utilizing the murine Microenvironment Cell Population (mMCP) method for in silico immune deconvolution. mMCP analysis estimates the abundance of tissue infiltrating immune and stromal populations based on cell-specific gene expression signatures.

Results

There was a clear sex bias in survival. Female Fth1+/- mice had significantly poorer survival than control females (Fth1+/+). The Fth1 genetic status did not affect survival in males. The mMCP analysis revealed a significant reduction in T cells and CD8 + T cell infiltration in the tumors of females with Fth1+/- background as compared to the Fth1+/+. Mast and fibroblast cell infiltration was increased in females and males with Fth1+/- background, respectively, compared to Fth1+/+ mice.

Conclusion

Genetic manipulation of Fth1 which leads to reduced systemic levels of FTH1 protein had a sexually dimorphic impact on survival. Fth1 heterozygosity significantly worsened survival in females but did not affect survival in male GBMs. Furthermore, the genetic manipulation of Fth1 significantly affected tumor infiltration of T-cells, CD8 + T cells, fibroblasts, and mast cells in a sexually dimorphic manner. These results demonstrate a role for FTH1 and presumably iron status in establishing the tumor cellular landscape that ultimately impacts survival and further reveals a sex bias that may inform the population studies showing a sex effect on the prevalence of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data and methodology supporting the findings of this study are available within the paper. The RNA sequencing data is deposited at NCBI Gene Expression Omnibus repository.

References

  1. Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D et al (2022) Epidemiology of glioblastoma multiforme–literature review. Cancers (Basel). 14(10). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139611/

  2. Tamimi AF, Juweid M (2017) Epidemiology and outcome of Glioblastoma. Glioblastoma: 143–153. doi: https://www.ncbi.nlm.nih.gov/books/NBK470003/

  3. McLendon RE, Halperin EC (2003) Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer. 98(8):1745–1748. https://doi.org/10.1002/cncr.11666

  4. Lopes-Ramos CM, Quackenbush J, DeMeo DL (2020) Genome-wide sex and gender differences in Cancer. Front Oncol 10:2486. https://www.frontiersin.org/articles/. https://doi.org/10.3389/fonc.2020.597788/full

    Article  Google Scholar 

  5. Khan MT, Prajapati B, Lakhina S, Sharma M, Prajapati S, Chosdol K et al (2021) Identification of gender-specific molecular differences in Glioblastoma (GBM) and Low-Grade Glioma (LGG) by the analysis of large transcriptomic and epigenomic datasets. Front Oncol 11:3634. https://doi.org/10.3389/fonc.2021.699594

    Article  Google Scholar 

  6. Franceschi E, Tosoni A, Minichillo S, Depenni R, Paccapelo A, Bartolini S et al (2018) The prognostic roles of gender and O6-Methylguanine-DNA methyltransferase methylation status in Glioblastoma Patients: the female power. World Neurosurg 112:e342–e347. https://pubmed.ncbi.nlm.nih.gov/29337169/

    Article  PubMed  Google Scholar 

  7. Whitmire P, Rickertsen CR, Hawkins-Daarud A, Carrasco E, Lorence J, Leon G, De et al (2018) Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients. https://doi.org/10.1101/325464v2. bioRxiv.:325464. https://www.biorxiv.org/content/

  8. Yang W, Warrington NM, Taylor SJ, Whitmire P, Carrasco E, Singleton KW et al (2019) Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data [Internet]. Vol. 11, Sci. Transl. Med. 2019. doi: https://stm.sciencemag.org/

  9. Ma J, Yao Y, Tian Y, Chen K, Liu B (2022) Advances in sex disparities for cancer immunotherapy: unveiling the dilemma of Yin and Yang. Biol Sex Differ 2022 131(1):1–12. https://bsd.biomedcentral.com/articles/https://doi.org/10.1186/s13293-022-00469-5

    Article  Google Scholar 

  10. Irelli A, Sirufo MM, D’Ugo C, Ginaldi L, De Martinis M (2020) Sex and gender influences on cancer immunotherapy response. Biomedicines 8(7). https://doi.org/10.3390/biomedicines8070232

  11. Han J, Yang Y, Li X, Wu J, Sheng Y, Qiu J et al (2022) Pan-cancer analysis reveals sex-specific signatures in the tumor microenvironment. Mol Oncol 16(11):2153–2173. https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/1878-0261.13203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mackenzie EL, Iwasaki K, Tsuji Y (2008) Intracellular iron transport and storage: From molecular mechanisms to health implications. Antioxid Redox Signal 10(6):997. pmc/articles/PMC2932529/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen Y, Fan Z, Yang Y, Gu C (2019) Iron metabolism and its contribution to cancer (review). Int J Oncol 54(4):1143–1154. http://www.spandidos-publications.com/https://doi.org/10.3892/ijo.2019.4720/abstract

    Article  CAS  PubMed  Google Scholar 

  14. Schonberg DL, Miller TE, Wu Q, Flavahan WA, Das NK, Hale JS et al (2015) Preferential Iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell 28(4):441–455, https://doi.org/10.1016/j.ccell.2015.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ (2020) Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 10:476. https://doi.org/10.3389/fonc.2020.00476

    Article  PubMed  PubMed Central  Google Scholar 

  16. Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G et al (2017) Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 2017 3629 36(29):4089–4099. https://www.nature.com/articles/onc201711

    CAS  Google Scholar 

  17. O’Donnell KA, Yu D, Zeller KI, Kim J, Racke F, Thomas-Tikhonenko A et al (2006) Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol Cell Biol 26(6):2373. https://doi.org/10.1128/MCB.26.6.2373-2386.2006

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blight GD, Morgan EH (1983) Ferritin and iron uptake by reticulocytes. Br J Haematol 55(1):59–71. https://doi.org/10.1111/j.1365-2141.1983.tb01224.x

    Article  CAS  PubMed  Google Scholar 

  19. Shesh B, Slagle-Webb B, Shenoy G, Khristov V, Zacharia BE, Connor JR (eds) (2023) Uptake of H-ferritin by Glioblastoma stem cells and its impact on their invasion capacity. J Cancer Res Clin Oncol. https://pubmed.ncbi.nlm.nih.gov/37237166/

  20. Sacco A, Battaglia AM, Botta C, Aversa I, Mancuso S, Costanzo F et al (2021) Iron metabolism in the tumor microenvironment—implications for anti-cancer immune response. Cells 10(2):1–17. https://doi.org/10.3390/cells10020303

    Article  Google Scholar 

  21. Ferreira C, Santambrogio P, Martin ME, Andrieu V, Feldmann G, Hénin D et al (2001) H ferritin knockout mice: a model of hyperferritinemia in the absence of iron overload. Blood 98(3):525–532. https://ashpublications.org/blood/article/98/3/525/53241/H-ferritin-knockout-mice-a-model-of

    Article  CAS  PubMed  Google Scholar 

  22. Thompson K, Menzies S, Muckenthaler M, Torti FM, Wood T, Torti SV et al (2003) Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J Neurosci Res 71(1):46–63. https://www.researchgate.net/publication/10993145_Mouse_brains_deficient_in_H-ferritin_have_normal_iron_concentration_but_a_protein_profile_of_iron_deficiency_and_increased_evidence_of_oxidative_stress

    Article  CAS  PubMed  Google Scholar 

  23. Troike KM, Silver DJ, Ghosh PK, Mulkearns-Hubert EE, Hubert CG, Connor JR et al (2022) Tumor cell-intrinsic HFE drives glioblastoma growth. bioRxiv.:2022.04.13.487917. https://doi.org/10.1101/2022.04.13.487917v1. https://www.biorxiv.org/content/

  24. Biskup E, Schejbel L, de Oliveira DNP, Høgdall E (2022) Test of the FlashFREEZE unit in tissue samples freezing for biobanking purposes. Cell Tissue Bank.:1–13. https://link.springer.com/article/10.1007/s10561-022-10045-1

  25. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17(1):1–20. https://genomebiology.biomedcentral.com/articles/https://doi.org/10.1186/s13059-016-1070-5

    Article  CAS  Google Scholar 

  26. Petitprez F, Levy S, Sun CM, Meylan M, Linhard C, Becht E et al (2020) The murine Microenvironment Cell Population counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations in murine samples using gene expression. Genome Med 12(1):1–15. https://genomemedicine.biomedcentral.com/articles/https://doi.org/10.1186/s13073-020-00783-w

    Article  CAS  Google Scholar 

  27. Risso D, Ngai J, Speed TP, Dudoit S (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 2014 329(9):896–902. https://www.nature.com/articles/nbt.2931

    Article  Google Scholar 

  28. Ho KH, Patrizi A (2021) Assessment of common housekeeping genes as reference for gene expression studies using RT-qPCR in mouse choroid plexus. Sci Rep 11(1):3278. https://doi.org/10.1038/s41598-021-82800-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  30. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003 343(3):267–273. https://www.nature.com/articles/ng1180

    Google Scholar 

  31. Rahnenfuhrer AA (2022) Bioconductor - topGO [Internet]. Bioconductor. 2022. p. 1. https://bioconductor.org/packages/release/bioc/html/topGO.html

  32. Marisetty A, Wei J, Kong LY, Ott M, Fang D, Sabbagh A et al (2020) MiR-181 family modulates osteopontin in glioblastoma multiforme. Cancers 2020, Vol 12, Page 3813. 12(12):3813. doi: https://www.mdpi.com/2072-6694/12/12/3813/htm

  33. Wen X, Li S, Guo M, Liao H, Chen Y, Kuang X et al (2020) miR-181a-5p inhibits the proliferation and invasion of drug-resistant glioblastoma cells by targeting F-box protein 11 expression. Oncol Lett 20(5). DOI: 10.3892/ol.2020.12098

  34. Lv Z, Yang L (2013) MiR-124 inhibits the growth of glioblastoma through the downregulation of SOS1. Mol Med Rep 8(2):345–349. https://pubmed.ncbi.nlm.nih.gov/23817964/

    Article  PubMed  Google Scholar 

  35. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6(1):1–17. https://bmcmedicine.biomedcentral.com/articles/https://doi.org/10.1186/1741-7015-6-14

    Article  CAS  Google Scholar 

  36. Mauldin IS, Jo J, Wages NA, Yogendran LV, Mahmutovic A, Young SJ et al (2021) Proliferating CD8 + T cell infiltrates are associated with improved survival in glioblastoma. Cells 10(12):3378. https://doi.org/10.3390/cells10123378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vanoaica L, Richman L, Jaworski M, Darshan D, Luther SA, Kühn LC (2014) Conditional deletion of ferritin H in mice reduces B and T lymphocyte populations. PLoS ONE 9(2):e89270. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089270

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vickman RE, Faget DV, Beachy P, Beebe D, Bhowmick NA, Cukierman E et al (2020) Deconstructing tumor heterogeneity: the stromal perspective. Oncotarget 11(40):3621. https://doi.org/10.18632/oncotarget.27736

    Article  PubMed  PubMed Central  Google Scholar 

  39. Khalafallah AM, Huq S, Jimenez AE, Serra R, Bettegowda C, Mukherjee D (2021) Zooming in” on glioblastoma: Understanding tumor heterogeneity and its clinical implications in the era of single-cell ribonucleic acid sequencing. Neurosurgery 88(3):477–486. https://doi.org/10.1093/neuros/nyaa305

    Article  PubMed  Google Scholar 

  40. Melillo RM, Guarino V, Avilla E, Galdiero MR, Liotti F, Prevete N et al (2010) Mast cells have a protumorigenic role in human thyroid cancer. Oncogene 29(47):6203–6215. https://pubmed.ncbi.nlm.nih.gov/20729915/

    Article  CAS  PubMed  Google Scholar 

  41. Johansson A, Rudolfsson S, Hammarsten P, Halin S, Pietras K, Jones J et al (2010) Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177(2):1031–1041. https://pubmed.ncbi.nlm.nih.gov/20616342/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Põlajeva J, Sjösten AM, Lager N, Kastemar M, Waern I, Alafuzoff I et al (2011) Mast cell accumulation in glioblastoma with a potential role for stem cell factor and chemokine CXCL12. PLoS ONE 6(9). https://doi.org/10.1371/journal.pone.0025222

  43. Ribatti D, Tamma R, Annese T (2020) Epithelial-mesenchymal transition in Cancer: A historical overview. Transl Oncol 13(6):100773. https://doi.org/10.1016/j.tranon.2020.100773

    Article  PubMed  PubMed Central  Google Scholar 

  44. Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P (2005) Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23(35):8959–8967. https://pubmed.ncbi.nlm.nih.gov/16219934/

    Article  PubMed  Google Scholar 

  45. Ribatti D, Crivellato E (2009) The controversial role of mast cells in tumor growth. Int Rev Cell Mol Biol 275(C):89–131. https://pubmed.ncbi.nlm.nih.gov/19491054/

    Article  CAS  PubMed  Google Scholar 

  46. Seidel H, Hertfelder HJ, Oldenburg J, Kruppenbacher JP, Afrin LB, Molderings GJ (2021) Effects of primary mast cell disease on hemostasis and erythropoiesis. Int J Mol Sci 22(16). https://doi.org/10.3390/ijms22168960

  47. Asif PJ, Longobardi C, Hahne M, Medema JP (2021) The role of cancer-associated fibroblasts in cancer invasion and metastasis. Cancers (Basel). 13(18). https://doi.org/10.3390/cancers13184720

  48. Song H, Fu X, Wu C, Li S (2020) Aging-related tumor associated fibroblasts changes could worsen the prognosis of GBM patients. Cancer Cell Int 20(1). https://doi.org/10.1186/s12935-020-01571-7

  49. Ferreira C, Santambrogio P, Martin ME, Andrieu V, Feldmann G, Hénin D et al (2001) H ferritin knockout mice: a model of hyperferritinemia in the absence of iron overload. Blood 98(3):525–532. https://ashpublications.org/blood/article-pdf/98/3/525/1675612/h8150100525.pdf

    Article  CAS  PubMed  Google Scholar 

  50. Wu T, Li Y, Liu B, Zhang S, Wu L, Zhu X et al (2016) Expression of Ferritin Light Chain (FTL) is elevated in Glioblastoma, and FTL silencing inhibits Glioblastoma Cell Proliferation via the GADD45/JNK pathway. PLoS ONE 11(2):e0149361. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149361

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rosager AM, Sørensen MD, Rikke H, Dahlrot DL, Schonberg, Jeremy N, Rich, Justin D, Lathia BWK (2017) Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors: Expression and prognostic value. PLoS One. https://doi.org/10.1371/journal.pone.0182954

Download references

Acknowledgements

We sincerely thank Penn State College of Medicine’s Genomic Sciences Core members, Dr. Sirisha Pochareddy and Oana Bolt, for their assistance in tissue RNA isolation and mRNA sequencing-related efforts.

Funding

This work was funded by grant P01CA245705 by the National Institutes of Health. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Bhavyata (Pandya) Shesh, James R. Connor. Methodology: Bhavyata (Pandya) Shesh, Becky Slagle- Webb, Elizabeth Neely, Vonn Walter, Kondaiah Palsa, Todd Schell. Formal analysis and investigation: Bhavyata (Pandya) Shesh, Vonn Walter. Writing - original draft preparation: Bhavyata (Pandya) Shesh. Writing - review and editing: Bhavyata (Pandya) Shesh, James R. Connor, Vonn Walter. Funding acquisition: James R. Connor. Resources: James R. Connor, Vonn Walter, Todd Schell. Supervision: James R. Connor.

Corresponding author

Correspondence to James R. Connor.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Mice used in this study were handled following an Institutional Animal Care and Use Committee (IACUC) - compliant protocol. Penn State Hershey College of Medicine IACUC # PROTO202001393 approved.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya Shesh, B., Walter, V., Palsa, K. et al. Sexually dimorphic effect of H-ferritin genetic manipulation on survival and tumor microenvironment in a mouse model of glioblastoma. J Neurooncol 164, 569–586 (2023). https://doi.org/10.1007/s11060-023-04415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04415-2

Keywords

Navigation