Skip to main content

Advertisement

Log in

Stereotactic body radiotherapy for spine metastases: a review of 24 Gy in 2 daily fractions

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Stereotactic body radiotherapy (SBRT) has proven to be a highly effective treatment for selected patients with spinal metastases. Randomized evidence shows improvements in complete pain response rates and local control with lower retreatment rates favoring SBRT, compared to conventional external beam radiotherapy (cEBRT). While there are several reported dose-fractionation schemes for spine SBRT, 24 Gy in 2 fractions has emerged with Level 1 evidence providing an excellent balance between minimizing treatment toxicity while respecting patient convenience and financial strain.

Methods

We provide an overview of the 24 Gy in 2 SBRT fraction regimen for spine metastases, which was developed at the University of Toronto and tested in an international Phase 2/3 randomized controlled trial.

Results

The literature summarizing global experience with 24 Gy in 2 SBRT fractions suggests 1-year local control rates ranging from 83-93.9%, and 1-year rates of vertebral compression fracture ranging from 5.4-22%. Reirradiation of spine metastases that failed prior cEBRT is also feasible with 24 Gy in 2 fractions, and 1-year local control rates range from 72-86%. Post-operative spine SBRT data are limited but do support the use of 24 Gy in 2 fractions with reported 1-year local control rates ranging from 70-84%. Typically, the rates of plexopathy, radiculopathy and myositis are under 5% in those series reporting mature follow up, with no cases of radiation myelopathy (RM) reported in the de novo setting when the spinal cord avoidance structure is limited to 17 Gy in 2 fractions. However, re-irradiation RM has been observed following 2 fraction SBRT. More recently, 2-fraction dose escalation with 28 Gy, with a higher dose constraint to the critical neural tissues, has been reported suggesting improved rates of local control. This regimen may be important in those patients with radioresistant histologies, high grade epidural disease, and/or paraspinal disease.

Conclusion

The dose-fractionation of 24 Gy in 2 fractions is well-supported by published literature and is an ideal starting point for centers looking to establish a spine SBRT program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on request.

References

  1. Jacobs WB, Perrin RG (2001) Evaluation and treatment of spinal metastases: an overview. Neurosurg Focus FOC 11:1–11. https://doi.org/10.3171/foc.2001.11.6.11

    Article  Google Scholar 

  2. Schiff D, O’Neill BP, Suman VJ (1997) Spinal epidural metastasis as the initial manifestation of malignancy: clinical features and diagnostic approach. Neurology 49:452–456. https://doi.org/10.1212/WNL.49.2.452

    Article  CAS  PubMed  Google Scholar 

  3. Conti A, Acker G, Kluge A et al (2019) Decision making in patients with metastatic spine. The role of minimally invasive treatment modalities. Front Oncol 9:915

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klimo P, Thompson CJ, Kestle JRW, Schmidt MH (2005) A meta-analysis of surgery versus conventional radiotherapy for the treatment of metastatic spinal epidural disease. Neuro Oncol 7:64–76. https://doi.org/10.1215/S1152851704000262

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lutz S, Balboni T, Jones J et al (2017) Palliative radiation therapy for bone metastases: update of an ASTRO evidence-based Guideline. Pract Radiat Oncol 7:4–12. https://doi.org/10.1016/j.prro.2016.08.001

    Article  PubMed  Google Scholar 

  6. Chow E, Zeng L, Salvo N et al (2012) Update on the systematic review of Palliative Radiotherapy trials for bone metastases. Clin Oncol 24:112–124. https://doi.org/10.1016/j.clon.2011.11.004

    Article  CAS  Google Scholar 

  7. Sprave T, Verma V, Förster R et al (2018) Randomized phase II trial evaluating pain response in patients with spinal metastases following stereotactic body radiotherapy versus three-dimensional conformal radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol 128:274–282. https://doi.org/10.1016/j.radonc.2018.04.030

    Article  Google Scholar 

  8. Foro Arnalot P, Fontanals AV, Galcerán JC et al (2008) Randomized clinical trial with two palliative radiotherapy regimens in painful bone metastases: 30 gy in 10 fractions compared with 8 gy in single fraction. Radiother Oncol J Eur Soc Ther Radiol Oncol 89:150–155. https://doi.org/10.1016/j.radonc.2008.05.018

    Article  Google Scholar 

  9. Husain ZA, Sahgal A, De Salles A et al (2017) Stereotactic body radiotherapy for de novo spinal metastases: systematic review International Stereotactic Radiosurgery Society practice guidelines. J Neurosurg Spine 27:295–302. https://doi.org/10.3171/2017.1.SPINE16684

    Article  PubMed  Google Scholar 

  10. Mizumoto M, Harada H, Asakura H et al (2011) Radiotherapy for patients with metastases to the spinal column: a review of 603 patients at Shizuoka Cancer Center Hospital. Int J Radiat Oncol Biol Phys 79:208–213. https://doi.org/10.1016/j.ijrobp.2009.10.056

    Article  PubMed  Google Scholar 

  11. Sahgal A, Myrehaug S, Dennis K et al (2017) A randomized phase II/III study comparing stereotactic body radiotherapy (SBRT) versus conventional palliative radiotherapy (CRT) for patients with spinal metastases (NCT02512965). J Clin Oncol 35:TPS10129. https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS10129

    Article  Google Scholar 

  12. Sahgal A, Atenafu EG, Chao S et al (2013) Vertebral compression fracture after spine stereotactic body radiotherapy: a multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J Clin Oncol 31:3426–3431. https://doi.org/10.1200/JCO.2013.50.1411

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rose PS, Laufer I, Boland PJ et al (2009) Risk of fracture after single fraction image-guided intensity-modulated radiation therapy to spinal metastases. J Clin Oncol 27:5075–5079. https://doi.org/10.1200/JCO.2008.19.3508

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chang JH, Gandhidasan S, Finnigan R et al (2017) Stereotactic ablative body radiotherapy for the treatment of spinal oligometastases. Clin Oncol (R Coll Radiol) 29:e119–e125. https://doi.org/10.1016/j.clon.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  15. Ito K, Ogawa H, Shimizuguchi T et al (2018) Stereotactic body radiotherapy for spinal metastases: clinical experience in 134 cases from a single Japanese Institution. Technol Cancer Res Treat 17:1533033818806472. https://doi.org/10.1177/1533033818806472

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ito K, Ogawa H, Nakajima Y (2021) Efficacy and toxicity of re-irradiation spine stereotactic body radiotherapy with respect to irradiation dose history. Jpn J Clin Oncol 51:264–270. https://doi.org/10.1093/jjco/hyaa178

    Article  PubMed  Google Scholar 

  17. Alghamdi M, Sahgal A, Soliman H et al (2019) Postoperative stereotactic body radiotherapy for spinal metastases and the impact of Epidural Disease Grade. Neurosurgery 85:E1111–E1118. https://doi.org/10.1093/neuros/nyz349

    Article  PubMed  Google Scholar 

  18. Ogawa H, Ito K, Shimizuguchi T et al (2018) Re-irradiation for painful bone metastases using stereotactic body radiotherapy. Acta Oncol 57:1700–1704. https://doi.org/10.1080/0284186X.2018.1503712

    Article  CAS  PubMed  Google Scholar 

  19. Kim H, Rajagopalan MS, Beriwal S et al (2015) Cost-effectiveness analysis of single fraction of stereotactic body radiation therapy compared with single fraction of external beam radiation therapy for palliation of vertebral bone metastases. Int J Radiat Oncol Biol Phys 91:556–563

    Article  PubMed  Google Scholar 

  20. Zeng KL, Sahgal A, Tseng C-L et al (2021) Prognostic factors Associated with surviving less than 3 months vs greater than 3 years specific to spine stereotactic body radiotherapy and late adverse events. Neurosurgery 88:971–979. https://doi.org/10.1093/neuros/nyaa583

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tseng CL, Eppinga W, Charest-Morin R et al (2017) Spine stereotactic body radiotherapy: indications, outcomes, and points of caution. Glob Spine J 7:179–197. https://doi.org/10.1177/2192568217694016

    Article  Google Scholar 

  22. Jabbari S, Gerszten PC, Ruschin M et al (2016) Stereotactic body radiotherapy for spinal metastases: practice guidelines, outcomes, and risks. Cancer J 22:280–289. https://doi.org/10.1097/PPO.0000000000000205

    Article  PubMed  Google Scholar 

  23. Laufer I, Rubin DG, Lis E et al (2013) The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist 18:744–751. https://doi.org/10.1634/theoncologist.2012-0293

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fisher CG, DiPaola CP, Ryken TC et al (2010) A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the spine oncology Study Group. Spine (Phila Pa 1976) 35:E1221–E1229. https://doi.org/10.1097/BRS.0b013e3181e16ae2

    Article  PubMed  Google Scholar 

  25. Wardak Z, Bland R, Ahn C et al (2019) A phase 2 clinical trial of SABR followed by Immediate Vertebroplasty for Spine Metastases. Int J Radiat Oncol Biol Phys 104:83–89. https://doi.org/10.1016/j.ijrobp.2019.01.072

    Article  PubMed  Google Scholar 

  26. Fisher C, Ali Z, Detsky J et al (2019) Photodynamic therapy for the treatment of vertebral metastases: a phase I clinical trial. Clin cancer Res 25:5766–5776. https://doi.org/10.1158/1078-0432.CCR-19-0673

    Article  PubMed  Google Scholar 

  27. Bilsky MH, Laufer I, Fourney DR et al (2010) Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine 13:324–328. https://doi.org/10.3171/2010.3.SPINE09459

    Article  PubMed  Google Scholar 

  28. Redmond KJ, Lo SS, Fisher C, Sahgal A (2016) Postoperative stereotactic body Radiation Therapy (SBRT) for spine metastases: a critical review to Guide Practice. Int J Radiat Oncol Biol Phys 95:1414–1428. https://doi.org/10.1016/j.ijrobp.2016.03.027

    Article  PubMed  Google Scholar 

  29. Di Perna G, Cofano F, Mantovani C et al (2020) Separation surgery for metastatic epidural spinal cord compression: a qualitative review. J Bone Oncol 25:100320. https://doi.org/10.1016/j.jbo.2020.100320

    Article  PubMed  PubMed Central  Google Scholar 

  30. Turel MK, Kerolus MG, O’Toole JE (2017) Minimally invasive “separation surgery” plus adjuvant stereotactic radiotherapy in the management of spinal epidural metastases. J Craniovertebral Junction Spine 8:119–126. https://doi.org/10.4103/jcvjs.JCVJS_13_17

    Article  Google Scholar 

  31. Furuya T, Lee YK, Archibald-Heeren BR et al (2020) Evaluation of multi-institutional end-to-end testing for post-operative spine stereotactic body radiation therapy. Phys Imaging Radiat Oncol 16:61–68. https://doi.org/10.1016/j.phro.2020.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dunne EM, Sahgal A, Lo SS et al (2020) International consensus recommendations for target volume delineation specific to sacral metastases and spinal stereotactic body radiation therapy (SBRT). Radiother Oncol 145:21–29. https://doi.org/10.1016/j.radonc.2019.11.026

    Article  PubMed  Google Scholar 

  33. Redmond KJ, Robertson S, Lo SS et al (2017) Consensus Contouring Guidelines for postoperative stereotactic body Radiation Therapy for Metastatic Solid Tumor Malignancies to the spine. Int J Radiat Oncol Biol Phys 97:64–74. https://doi.org/10.1016/j.ijrobp.2016.09.014

    Article  PubMed  Google Scholar 

  34. Cox BW, Spratt DE, Lovelock M et al (2012) International Spine Radiosurgery Consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 83:e597–605. https://doi.org/10.1016/j.ijrobp.2012.03.009

    Article  PubMed  Google Scholar 

  35. Chen X, LeCompte MC, Gui C et al (2022) Deviation from consensus contouring guidelines predicts inferior local control after spine stereotactic body radiotherapy. Radiother Oncol 173:215–222. https://doi.org/10.1016/j.radonc.2022.05.035

    Article  PubMed  Google Scholar 

  36. Pontoriero A, Iatì G, Cacciola A et al (2020) Stereotactic body Radiation Therapy with Simultaneous Integrated Boost in patients with spinal metastases. Technol Cancer Res Treat 19:1533033820904447. https://doi.org/10.1177/1533033820904447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lucido JJ, Mullikin TC, Abraha F et al (2022) Single and multifraction spine stereotactic body radiation therapy and the risk of radiation induced myelopathy. Adv Radiat Oncol 7:101047. https://doi.org/10.1016/j.adro.2022.101047

    Article  PubMed  PubMed Central  Google Scholar 

  38. van der Velden JM, Hes J, Sahgal A et al (2018) The use of a simultaneous integrated boost in spinal stereotactic body radiotherapy to reduce the risk of vertebral compression fractures: a treatment planning study. Acta Oncol (Madr) 57:1271–1274. https://doi.org/10.1080/0284186X.2018.1468089

    Article  Google Scholar 

  39. Chan MW, Thibault I, Atenafu EG et al (2016) Patterns of epidural progression following postoperative spine stereotactic body radiotherapy: implications for clinical target volume delineation. J Neurosurg Spine 24:652–659. https://doi.org/10.3171/2015.6.SPINE15294

    Article  PubMed  Google Scholar 

  40. Faruqi S, Chen H, Fariselli L et al (2022) Stereotactic radiosurgery for postoperative spine malignancy: a systematic review and International Stereotactic Radiosurgery Society Practice Guidelines. Pract Radiat Oncol 12:e65–e78. https://doi.org/10.1016/j.prro.2021.10.004

    Article  PubMed  Google Scholar 

  41. Li W, Sahgal A, Foote M et al (2012) Impact of immobilization on intrafraction motion for spine stereotactic body radiotherapy using cone beam computed tomography. Int J Radiat Oncol Biol Phys 84:520–526. https://doi.org/10.1016/j.ijrobp.2011.12.039

    Article  PubMed  Google Scholar 

  42. Hyde D, Lochray F, Korol R et al (2012) Spine stereotactic body radiotherapy utilizing cone-beam CT image-guidance with a robotic couch: intrafraction motion analysis accounting for all six degrees of freedom. Int J Radiat Oncol Biol Phys 82:e555–e562. https://doi.org/10.1016/j.ijrobp.2011.06.1980

    Article  PubMed  Google Scholar 

  43. Chang JH, Sangha A, Hyde D et al (2017) Positional accuracy of treating multiple Versus single vertebral metastases with stereotactic body radiotherapy. Technol Cancer Res Treat 16:231–237. https://doi.org/10.1177/1533034616681674

    Article  PubMed  Google Scholar 

  44. Thibault I, Chang EL, Sheehan J et al (2015) Response assessment after stereotactic body radiotherapy for spinal metastasis: a report from the SPIne response assessment in Neuro-Oncology (SPINO) group. Lancet Oncol 16:e595–603. https://doi.org/10.1016/S1470-2045(15)00166-7

    Article  PubMed  Google Scholar 

  45. Mir R, Kelly SM, Xiao Y et al (2020) Organ at risk delineation for radiation therapy clinical trials: global harmonization group consensus guidelines. Radiother Oncol J Eur Soc Ther Radiol Oncol 150:30–39. https://doi.org/10.1016/j.radonc.2020.05.038

    Article  Google Scholar 

  46. Dunne EM, Lo SS, Liu MC et al (2022) Thecal Sac Contouring as a surrogate for the Cauda Equina and Intracanal spinal nerve roots for spine stereotactic body Radiation Therapy (SBRT): Contour Variability and Recommendations for Safe Practice. Int J Radiat Oncol Biol Phys 112:114–120. https://doi.org/10.1016/j.ijrobp.2021.08.023

    Article  PubMed  Google Scholar 

  47. Tseng C-L, Sussman MS, Atenafu EG et al (2015) Magnetic resonance imaging assessment of spinal cord and cauda equina motion in supine patients with spinal metastases planned for spine stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 91:995–1002. https://doi.org/10.1016/j.ijrobp.2014.12.037

    Article  PubMed  Google Scholar 

  48. Oztek MA, Mayr NA, Mossa-Basha M et al (2020) The dancing cord: inherent spinal cord motion and its effect on cord dose in spine stereotactic body radiation therapy. Neurosurgery 87:1157–1166. https://doi.org/10.1093/neuros/nyaa202

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sahgal A, Weinberg V, Ma L et al (2013) Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys 85:341–347. https://doi.org/10.1016/j.ijrobp.2012.05.007

    Article  PubMed  Google Scholar 

  50. Sahgal A, Chang JH, Ma L et al (2021) Spinal cord dose tolerance to stereotactic body Radiation Therapy. Int J Radiat Oncol Biol Phys 110:124–136. https://doi.org/10.1016/j.ijrobp.2019.09.038

    Article  PubMed  Google Scholar 

  51. Sahgal A, Ma L, Weinberg V et al (2012) Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 82:107–116. https://doi.org/10.1016/j.ijrobp.2010.08.021

    Article  PubMed  Google Scholar 

  52. Hashmi A, Guckenberger M, Kersh R et al (2016) Re-irradiation stereotactic body radiotherapy for spinal metastases: a multi-institutional outcome analysis. J Neurosurg Spine 25:646–653. https://doi.org/10.3171/2016.4.SPINE151523

    Article  PubMed  Google Scholar 

  53. Sangha A, Korol R, Sahgal A (2013) Stereotactic body radiotherapy for the treatment of spinal metastases: an overview of the University of Toronto, Sunnybrook Health Sciences Odette Cancer Centre, technique. J Med Imaging Radiat Sci 44:126–133. https://doi.org/10.1016/j.jmir.2013.04.002

    Article  PubMed  Google Scholar 

  54. Sahgal A, Myrehaug SD, Siva S et al (2021) Stereotactic body radiotherapy versus conventional external beam radiotherapy in patients with painful spinal metastases: an open-label, multicentre, randomised, controlled, phase 2/3 trial. Lancet Oncol 22:1023–1033. https://doi.org/10.1016/S1470-2045(21)00196-0

    Article  PubMed  Google Scholar 

  55. Zeng KL, Myrehaug S, Soliman H et al (2022) Mature local control and reirradiation rates comparing spine stereotactic body radiotherapy to Conventional Palliative External Beam Radiotherapy. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2022.05.043

    Article  PubMed  Google Scholar 

  56. Tseng CL, Soliman H, Myrehaug S et al (2018) Imaging-based outcomes for 24 gy in 2 daily fractions for patients with de Novo spinal metastases treated with spine stereotactic body Radiation Therapy (SBRT). Int J Radiat Oncol Biol Phys 102:499–507. https://doi.org/10.1016/j.ijrobp.2018.06.047

    Article  PubMed  Google Scholar 

  57. Detsky JS, Nguyen TK, Lee Y et al (2020) Mature imaging-based outcomes supporting local control for Complex Reirradiation Salvage spine stereotactic body Radiotherapy. Neurosurgery 87:816–822. https://doi.org/10.1093/neuros/nyaa109

    Article  PubMed  Google Scholar 

  58. Thibault I, Campbell M, Tseng C-L et al (2015) Salvage stereotactic body Radiotherapy (SBRT) following In-Field failure of initial SBRT for spinal metastases. Int J Radiat Oncol Biol Phys 93:353–360. https://doi.org/10.1016/j.ijrobp.2015.03.029

    Article  PubMed  Google Scholar 

  59. Al-Omair A, Masucci L, Masson-Cote L et al (2013) Surgical resection of epidural disease improves local control following postoperative spine stereotactic body radiotherapy. Neuro Oncol 15:1413–1419. https://doi.org/10.1093/neuonc/not101

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ito K, Nihei K, Shimizuguchi T et al (2018) Postoperative re-irradiation using stereotactic body radiotherapy for metastatic epidural spinal cord compression. J Neurosurg Spine 29:332–338. https://doi.org/10.3171/2018.1.SPINE171155

    Article  PubMed  Google Scholar 

  61. Balagamwala EH, Naik M, Reddy CA et al (2018) Pain flare after stereotactic radiosurgery for spine metastases. J Radiosurg SBRT 5:99–105

    PubMed  PubMed Central  Google Scholar 

  62. Pan HY, Allen PK, Wang XS et al (2014) Incidence and predictive factors of pain flare after spine stereotactic body radiation therapy: secondary analysis of phase 1/2 trials. Int J Radiat Oncol Biol Phys 90:870–876. https://doi.org/10.1016/j.ijrobp.2014.07.037

    Article  PubMed  Google Scholar 

  63. Chiang A, Zeng L, Zhang L et al (2013) Pain flare is a common adverse event in steroid-naïve patients after spine stereotactic body radiation therapy: a prospective clinical trial. Int J Radiat Oncol Biol Phys 86:638–642. https://doi.org/10.1016/j.ijrobp.2013.03.022

    Article  PubMed  Google Scholar 

  64. Khan L, Chiang A, Zhang L et al (2015) Prophylactic dexamethasone effectively reduces the incidence of pain flare following spine stereotactic body radiotherapy (SBRT): a prospective observational study. Support Care Cancer 23:2937–2943. https://doi.org/10.1007/s00520-015-2659-z

    Article  PubMed  Google Scholar 

  65. Faruqi S, Tseng CL, Whyne C et al (2018) Vertebral compression fracture after spine stereotactic body radiation therapy: a review of the pathophysiology and risk factors. Clin Neurosurg 83:314–322. https://doi.org/10.1093/neuros/nyx493

    Article  Google Scholar 

  66. Tjong MC, Moraes FY, Yamada Y et al (2020) Radiation-induced lumbosacral plexopathy after spine stereotactic body radiotherapy 2013; should the lumbosacral plexi be contoured? Clin Oncol 32:884–886. https://doi.org/10.1016/j.clon.2020.10.001

    Article  CAS  Google Scholar 

  67. Dahele M, Davey P, Reingold S, Shun Wong C (2006) Radiation-induced lumbo-sacral plexopathy (RILSP): an important enigma. Clin Oncol (R Coll Radiol) 18:427–428

    Article  CAS  PubMed  Google Scholar 

  68. Milano MT, Doucette C, Mavroidis P et al (2023) Hypofractionated stereotactic radiation therapy dosimetric tolerances for the inferior aspect of the Brachial Plexus: a systematic review. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2022.11.012

    Article  PubMed  Google Scholar 

  69. Lindberg K, Grozman V, Lindberg S et al (2019) Radiation-induced brachial plexus toxicity after SBRT of apically located lung lesions. Acta Oncol (Madr) 58:1178–1186. https://doi.org/10.1080/0284186X.2019.1601255

    Article  CAS  Google Scholar 

  70. Gerszten PC, Chen S, Quader M et al (2012) Radiosurgery for benign tumors of the spine using the synergy S with cone-beam computed tomography image guidance. J Neurosurg 117 Suppl:197–202. https://doi.org/10.3171/2012.8.gks12981

    Article  PubMed  Google Scholar 

  71. Katsoulakis E, Jackson A, Cox B et al (2017) A detailed dosimetric analysis of spinal cord tolerance in high-dose spine radiosurgery. Int J Radiat Oncol 99:598–607. https://doi.org/10.1016/j.ijrobp.2017.05.053

    Article  Google Scholar 

  72. Chang EL, Shiu AS, Mendel E et al (2007) Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J Neurosurg Spine 7:151–160. https://doi.org/10.3171/SPI-07/08/151

    Article  PubMed  Google Scholar 

  73. McClelland S III, Kim E, Passias PG et al (2017) Spinal stereotactic body radiotherapy in the United States: a decade-long nationwide analysis of patient demographics, practice patterns, and trends over time. J Clin Neurosci 46:109–112. https://doi.org/10.1016/j.jocn.2017.08.007

    Article  PubMed  Google Scholar 

  74. Folkert MR, Bilsky MH, Tom AK et al (2014) Outcomes and toxicity for hypofractionated and single-fraction image-guided stereotactic radiosurgery for sarcomas metastasizing to the spine. Int J Radiat Oncol Biol Phys 88:1085–1091. https://doi.org/10.1016/j.ijrobp.2013.12.042

    Article  PubMed  Google Scholar 

  75. Zelefsky MJ, Yamada Y, Greco C et al (2021) Phase 3 multi-center, prospective, randomized trial comparing single-dose 24 gy radiation therapy to a 3-fraction SBRT regimen in the treatment of oligometastatic cancer. Int J Radiat Oncol Biol Phys 110:672–679. https://doi.org/10.1016/j.ijrobp.2021.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zeng KL, Abugarib A, Soliman H et al (2022) Dose-escalated two-fraction spine stereotactic body radiotherapy: 28 gy vs. 24 gy in 2 daily fractions. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2022.09.076

    Article  PubMed  Google Scholar 

  77. Zeng KL, Myrehaug S, Soliman H et al (2019) Stereotactic body radiotherapy for spinal metastases at the extreme ends of the spine: imaging-based outcomes for cervical and sacral metastases. Neurosurgery 85:605–612. https://doi.org/10.1093/neuros/nyy393

  78. Finnigan R, Burmeister B, Barry T et al (2015) Technique and early clinical outcomes for spinal and paraspinal tumours treated with stereotactic body radiotherapy. J Clin Neurosci Off J Neurosurg Soc Australas 22:1258–1263. https://doi.org/10.1016/j.jocn.2015.01.030

  79. Thibault I, Al-Omair A, Masucci GL et al (2014) Spine stereotactic body radiotherapy for renal cell cancer spinal metastases: analysis of outcomes and risk of vertebral compression fracture. J Neurosurg Spine 21:711–718. https://doi.org/10.3171/2014.7.SPINE13895

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Literature search, article review, data abstraction and analysis were performed by EKN and CLT. The first draft of the manuscript was written by EKN and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chia-Lin Tseng.

Ethics declarations

Competing interests

MR owns intellectual property related to the image-guidance component on the Elekta Gamma Knife system. HS has travel and education grants from Elekta. SM has research support and honoraria from AAA/Novartis and Ipsen. AS is an advisor/consultant with Abbvie, Merck, Roche, Varian, Elekta, BrainLAB and VieCure, is a board member of the International Stereotactic Radiosurgery Society, has had past educational seminars with Elekta, Accuray Inc., Varian, BrainLAB, Medtronic Kyphon, received research grants with Elekta and Travel accommodations/expenses by Elekta, Varian, BrainLAB and belongs to the Elekta MR Linac Research Consortium, Elekta Spine, Oligometastases and Linac Based SRS Consortia. CLT is an advisor/consultant with Abbvie and Sanofi, has received travel accommodations/expenses & honoraria for past educational seminars by Elekta and belongs to the Elekta MR-Linac Research Consortium.

Ethical approval

This is a review article and no ethical approval is required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, E.K., Ruschin, M., Zhang, B. et al. Stereotactic body radiotherapy for spine metastases: a review of 24 Gy in 2 daily fractions. J Neurooncol 163, 15–27 (2023). https://doi.org/10.1007/s11060-023-04327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04327-1

Keywords

Navigation