Skip to main content

Advertisement

Log in

Postoperative epilepsy and survival in glioma patients: a nationwide population-based cohort study from 2009 to 2018

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Postoperative epilepsy is common in glioma patients and has been suggested to indicate disease progression, yet knowledge of its role as a prognostic factor is limited. This study investigates the association between postoperative epilepsy and survival amongst patients with gliomas.

Methods

We included 3763 patients with histopathologically diagnosed grade II, III, and IV gliomas from 2009 to 2018 according to the Danish Neuro-Oncology Registry. Information on epilepsy diagnosis was redeemed from the Danish National Patient Registry, the National Prescription Registry and the Danish Neuro-Oncology Registry. We used Cox proportional hazards models with 95% confidence intervals (CIs) to examine hazard ratios (HRs) for the association between postoperative epilepsy and risk of death. We examined the role of the timing of epilepsy in three different samples: Firstly, in all glioma patients with postoperative epilepsy; secondly, in patients with postoperative de novo epilepsy; thirdly, exclusively in a homogeneous sub-group of grade IV patients with postoperative de novo epilepsy.

Results

Glioma patients with postoperative epilepsy had an increased risk of death, regardless of prior epilepsy status (HR = 4.03; CI 2.69–6.03). A similar increase in the risk of death was also seen in patients with postoperative de novo epilepsy (HR = 2.08; CI 1.26–3.44) and in the sub-group of grade IV patients with postoperative de novo epilepsy (HR = 1.83; CI 1.05–3.21).

Conclusions

Postoperative epilepsy may negatively impact survival after glioma diagnosis, regardless of preoperative epilepsy status. Postoperative epilepsy may be an expression of a more invasive growth pattern of the gliomas following primary tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data accessibility

Research data was collected from Danish Health Registries and is not publicly accessible, which complies with the EU General Data Protection Regulation.

References

  1. Englot DJ, Berger MS, Barbaro NM, Chang EF (2011) Predictors of seizure freedom after resection of supratentorial low-grade gliomas. A review. J Neurosurg 115:240–244. https://doi.org/10.3171/2011.3.JNS1153

    Article  PubMed  Google Scholar 

  2. Bonney PA, Boettcher LB, Burks JD et al (2017) Rates of seizure freedom after surgical resection of diffuse low-grade gliomas. World Neurosurg 106:750–756. https://doi.org/10.1016/j.wneu.2017.06.144

    Article  PubMed  Google Scholar 

  3. Neal A, Morokoff A, O’Brien TJ, Kwan P (2016) Postoperative seizure control in patients with tumor-associated epilepsy. Epilepsia 57:1779–1788. https://doi.org/10.1111/epi.13562

    Article  PubMed  Google Scholar 

  4. Kerkhof M, Vecht CJ (2013) Seizure characteristics and prognostic factors of gliomas. Epilepsia 54:12–17. https://doi.org/10.1111/epi.12437

    Article  PubMed  Google Scholar 

  5. Chaichana KL, Parker SL, Olivi A, Quiñones-Hinojosa A (2009) Long-term seizure outcomes in adult patients undergoing primary resection of malignant brain astrocytomas. Clinical article. J Neurosurg 111:282–292. https://doi.org/10.3171/2009.2.JNS081132

    Article  PubMed  Google Scholar 

  6. Kim YH, Park CK, Kim TM et al (2013) Seizures during the management of high-grade gliomas: clinical relevance to disease progression. J Neurooncol 113:101–109. https://doi.org/10.1007/s11060-013-1094-6

    Article  PubMed  Google Scholar 

  7. You G, Sha Z-Y, Yan W et al (2012) Seizure characteristics and outcomes in 508 Chinese adult patients undergoing primary resection of low-grade gliomas: a clinicopathological study. Neuro Oncol 14:230–241. https://doi.org/10.1093/neuonc/nor205

    Article  PubMed  Google Scholar 

  8. Foy PM, Copeland GP, Shaw MD (1981) The incidence of postoperative seizures. Acta Neurochir 55:253–264. https://doi.org/10.1007/BF01808441

    Article  CAS  PubMed  Google Scholar 

  9. Chang EF, Potts MB, Keles GE et al (2008) Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg 108:227–235. https://doi.org/10.3171/JNS/2008/108/2/0227

    Article  PubMed  Google Scholar 

  10. Kahlenberg CA, Fadul CE, Roberts DW et al (2012) Seizure prognosis of patients with low-grade tumors. Seizure 21:540–545. https://doi.org/10.1016/j.seizure.2012.05.014

    Article  PubMed  Google Scholar 

  11. Wu AS, Trinh VT, Suki D et al (2013) A prospective randomized trial of perioperative seizure prophylaxis in patients with intraparenchymal brain tumors. J Neurosurg. https://doi.org/10.3171/2012.12.JNS111970

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kerkhof M, Dielemans JCM, van Breemen MS et al (2013) Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme. Neuro Oncol 15:961–967. https://doi.org/10.1093/neuonc/not057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Breemen MS, Wilms EB, Vecht CJ (2007) Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol 6:421–430. https://doi.org/10.1016/S1474-4422(07)70103-5

    Article  PubMed  Google Scholar 

  14. Marku M, Rasmussen BK, Belmonte F et al (2021) Prediagnosis epilepsy and survival in patients with glioma: a nationwide population-based cohort study from 2009 to 2018. J Neurol. https://doi.org/10.1007/s00415-021-10668-6

    Article  PubMed  Google Scholar 

  15. Shamji MF, Fric-Shamji EC, Benoit BG (2009) Brain tumors and epilepsy: pathophysiology of peritumoral changes. Neurosurg Rev 32:275–284. https://doi.org/10.1007/s10143-009-0191-7

    Article  PubMed  Google Scholar 

  16. Elian M (1975) Late effects of brain biopsy. J Neurol 211:95–104. https://doi.org/10.1007/BF00312467

    Article  CAS  PubMed  Google Scholar 

  17. Manaka S, Ishijima B, Mayanagi Y (2003) Postoperative seizures: epidemiology, pathology, and prophylaxis. Neurol Med Chir 43:589–600. https://doi.org/10.2176/nmc.43.589

    Article  Google Scholar 

  18. Grewal J, Grewal HK, Forman AD (2008) Seizures and epilepsy in cancer: etiologies, evaluation, and management. Curr Oncol Rep 10:63–71. https://doi.org/10.1007/s11912-008-0010-2

    Article  PubMed  Google Scholar 

  19. Smart D (2017) Radiation toxicity in the central nervous system: mechanisms and strategies for injury reduction. Semin Radiat Oncol 27:332–339. https://doi.org/10.1016/j.semradonc.2017.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koekkoek JAF, Kerkhof M, Dirven L, Heimans JJ, Reijneveld JC, Taphoorn MJB (2015) Seizure outcome after radiotherapy and chemotherapy in low-grade glioma patients: a systematic review. Neuro Oncol 17:924–934. https://doi.org/10.1093/neuonc/nov032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Santos-Pinheiro F, Park M, Liu D et al (2019) Seizure burden pre- and postresection of low-grade gliomas as a predictor of tumor progression in low-grade gliomas. Neurooncol Pract 6:209–217. https://doi.org/10.1093/nop/npy022

    Article  PubMed  Google Scholar 

  22. Di Bonaventura C, Albini M, D’Elia A et al (2017) Epileptic seizures heralding a relapse in high grade gliomas. Seizure 51:157–162. https://doi.org/10.1016/j.seizure.2017.08.009

    Article  PubMed  Google Scholar 

  23. Danfors T, Ribom D, Berntsson SG, Smits A (2009) Epileptic seizures and survival in early disease of grade 2 gliomas. Eur J Neurol 16:823–831. https://doi.org/10.1111/j.1468-1331.2009.02599.x

    Article  CAS  PubMed  Google Scholar 

  24. Toledo M, Sarria-Estrada S, Quintana M (2015) Prognostic implications of epilepsy in glioblastomas. Clin Neurol Neurosurg 139:166–171. https://doi.org/10.1016/j.clineuro.2015.10.002

    Article  PubMed  Google Scholar 

  25. Wasade VS, Viarasilpa T, Balki I et al (2020) Effect of seizure timing on long-term survival in patients with brain tumor. Epilepsy Behav 111:107307. https://doi.org/10.1016/j.yebeh.2020.107307

    Article  PubMed  Google Scholar 

  26. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  27. Schmidt M, Pedersen L, Sørensen HT (2014) The danish civil registration system as a tool in epidemiology. Eur J Epidemiol 29:541–549. https://doi.org/10.1007/s10654-014-9930-3

    Article  PubMed  Google Scholar 

  28. Hansen S (2016) The danish neuro-oncology registry. Clin Epidemiol 8:629–632. https://doi.org/10.2147/CLEP.S99459

    Article  PubMed  PubMed Central  Google Scholar 

  29. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis 40:373–383. https://doi.org/10.1016/0021-9681(87)90171-8

    Article  CAS  PubMed  Google Scholar 

  31. Oken MM, Creech RH, Tormey DC et al (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655

    Article  CAS  Google Scholar 

  32. Schmidt M, Schmidt SAJ, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT (2015) The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol 7:449–490. https://doi.org/10.2147/CLEP.S91125

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kildemoes WH, Sørensen HT, Hallas J (2011) The danish national prescription registry. Scand J Public Health 39:38–41. https://doi.org/10.1177/1403494810394717

    Article  PubMed  Google Scholar 

  34. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 9 Oct 2021

  35. Vezzani A, Friedman A (2011) Brain inflammation as a biomarker in epilepsy. Biomark Med 5:607–614. https://doi.org/10.2217/bmm.11.61

    Article  CAS  PubMed  Google Scholar 

  36. Aronica E, Boer K, Becker A et al (2008) Gene expression profile analysis of epilepsy-associated gangliogliomas. Neuroscience 151:272–292. https://doi.org/10.1016/j.neuroscience.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  37. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40. https://doi.org/10.1038/nrneurol.2010.178

    Article  CAS  PubMed  Google Scholar 

  38. Pitter KL, Tamagno I, Alikhanyan K et al (2016) Corticosteroids compromise survival in glioblastoma. Brain 139:1458–1471. https://doi.org/10.1093/brain/aww046

    Article  PubMed  PubMed Central  Google Scholar 

  39. Camphausen K, Cerna D, Scott T et al (2005) Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 114:380–386. https://doi.org/10.1002/ijc.20774

    Article  CAS  PubMed  Google Scholar 

  40. Bobustuc GC, Baker CH, Limaye A et al (2010) Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide. Neuro Oncol 12:917–927. https://doi.org/10.1093/neuonc/noq044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Glantz MJ, Cole BF, Forsyth PA et al (2000) Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 54:1886–1893. https://doi.org/10.1212/wnl.54.10.1886

    Article  CAS  PubMed  Google Scholar 

  42. Tremont-Lukats IW, Ratilal BO, Armstrong T, Gilbert MR (2008) Antiepileptic drugs for preventing seizures in people with brain tumors. Cochrane Database Syst Rev 2:CD04424. https://doi.org/10.1002/14651858.CD004424.pub2

    Article  Google Scholar 

  43. Hansen S, Nielsen J, Laursen RJ et al (2016) The danish neuro-oncology registry: establishment, completeness and validity. BMC Res Notes 9:425–425. https://doi.org/10.1186/s13104-016-2233-x

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lynge E, Sandegaard JL, Rebolj M (2011) The danish national patient register. Scand J Public Health 39:30–33. https://doi.org/10.1177/1403494811401482

    Article  Google Scholar 

  45. Bjerregaard B, Larsen OB (2011) The Danish Pathology Register. Scand J Public Health 39:72–74. https://doi.org/10.1177/1403494810393563

    Article  PubMed  Google Scholar 

  46. Olesen C, Søndergaard C, Thrane N, Nielsen GL, de Jong-van den Berg L, Olsen J (2001) Do pregnant women report use of dispensed medications? Epidemiology 12:497–501. https://doi.org/10.1097/00001648-200109000-00006

    Article  CAS  PubMed  Google Scholar 

  47. Rubak S, Høst A, Christensen LB, Langfrits MS, Thomsen RW (2018) Validity of asthma diagnoses and patterns of anti-asthmatic drug use in a cohort of 2053 Danish children. Health Sci Rep 1:e77. https://doi.org/10.1002/hsr2.77

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moth G, Vedsted P, Schiøtz P (2007) Identification of asthmatic children using prescription data and diagnosis. Eur J Clin Pharmacol 63:605–611. https://doi.org/10.1007/s00228-007-0286-4

    Article  PubMed  Google Scholar 

  49. Stensballe LG, Klansø L, Jensen A, Haerskjold A, Thomsen SF, Simonsen J (2017) The validity of register data to identify children with atopic dermatitis, asthma or allergic rhinoconjunctivitis. Pediatr Allergy Immunol 28:535–542. https://doi.org/10.1111/pai.12743

    Article  PubMed  Google Scholar 

  50. Iorgulescu JB, Torre M, Harary M et al (2019) The misclassification of diffuse gliomas: rates and outcomes. Clin Cancer Res 25:2656–2663. https://doi.org/10.1158/1078-0432.CCR-18-3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from Nordsjællands Hospital, Helen Rudes Fond, and Tvergaards Fond.

Author information

Authors and Affiliations

Authors

Contributions

Design of the project: MM, BKR, and PEB. Data collection: FB, MM. Data analysis and interpretation: FB, EAWA, and MM. Writing of the manuscript: MM. Critical revision of the manuscript: BKR, PEB, FB, CJ, and EAWA. All the authors commented on and approved the final manuscript before submission.

Corresponding author

Correspondence to Mirketa Marku.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest to disclose. The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This is an observational study which was approved by the Danish Cancer Society (No. 2018-DCRC-0054). According to Danish legislation, since no patients were contacted for this study, no ethical approval or informed consents are required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marku, M., Rasmussen, B.K., Belmonte, F. et al. Postoperative epilepsy and survival in glioma patients: a nationwide population-based cohort study from 2009 to 2018. J Neurooncol 157, 71–80 (2022). https://doi.org/10.1007/s11060-022-03948-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-03948-2

Keywords

Navigation