Skip to main content
Log in

Eigenvector PageRank difference as a measure to reveal topological characteristics of the brain connectome for neurosurgery

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Applying graph theory to the human brain has the potential to help prognosticate the impacts of intracerebral surgery. Eigenvector (EC) and PageRank (PR) centrality are two related, but uniquely different measures of nodal centrality which may be utilized together to reveal varying neuroanatomical characteristics of the brain connectome.

Methods

We obtained diffusion neuroimaging data from a healthy cohort (UCLA consortium for neuropsychiatric phenomics) and applied a personalized parcellation scheme to them. We ranked parcels based on weighted EC and PR, and then calculated the difference (EP difference) and correlation between the two metrics. We also compared the difference between the two metrics to the clustering coefficient.

Results

While EC and PR were consistent for top and bottom ranking parcels, they differed for mid-ranking parcels. Parcels with a high EC centrality but low PR tended to be in the medial temporal and temporooccipital regions, whereas PR conferred greater importance to multi-modal association areas in the frontal, parietal and insular cortices. The EP difference showed a weak correlation with clustering coefficient, though there was significant individual variation.

Conclusions

The relationship between PageRank and eigenvector centrality can identify distinct topological characteristics of the brain connectome such as the presence of unimodal or multimodal association cortices. These results highlight how different graph theory metrics can be used alone or in combination to reveal unique neuroanatomical features for further clinical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files.

Code availability

The code and software used in the current study is proprietary.

References

  1. Hervey-Jumper SL, Li J, Lau D, Molinaro AM, Perry DW, Meng L, Berger MS (2015) Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J Neurosurg 123:325–339. doi:https://doi.org/10.3171/2014.10.Jns141520

    Article  PubMed  Google Scholar 

  2. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483. doi:https://doi.org/10.3171/jns.1986.65.4.0476

    Article  CAS  PubMed  Google Scholar 

  3. Stopa BM, Senders JT, Broekman MLD, Vangel M, Golby AJ (2020) Preoperative functional MRI use in neurooncology patients: a clinician survey. NeuroSurg Focus 48:E11. doi:https://doi.org/10.3171/2019.11.Focus19779

    Article  PubMed  PubMed Central  Google Scholar 

  4. Silva MA, See AP, Essayed WI, Golby AJ, Tie Y (2018) Challenges and techniques for presurgical brain mapping with functional MRI. NeuroImage Clin 17:794–803. https://doi.org/10.1016/j.nicl.2017.12.008

    Article  PubMed  Google Scholar 

  5. Dadario NB, Brahimaj B, Yeung J, Sughrue ME (2021) Reducing the cognitive footprint of brain tumor surgery. Front Neurol 12:711646. https://doi.org/10.3389/fneur.2021.711646

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mandonnet E, Cerliani L, Siuda-Krzywicka K, Poisson I, Zhi N, Volle E, De Schotten M (2017) A network-level approach of cognitive flexibility impairment after surgery of a right temporo-parietal glioma. Neurochirurgie 63:308–313

    Article  CAS  Google Scholar 

  7. Yeung JT, Taylor HM, Young IM, Nicholas PJ, Doyen S, Sughrue ME (2021) Unexpected hubness: a proof-of-concept study of the human connectome using pagerank centrality and implications for intracerebral neurosurgery. J Neurooncol 151:249–256. doi:https://doi.org/10.1007/s11060-020-03659-6

    Article  PubMed  Google Scholar 

  8. Duffau H, Moritz-Gasser S, Mandonnet E (2014) A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang 131:1–10. doi:https://doi.org/10.1016/j.bandl.2013.05.011

    Article  PubMed  Google Scholar 

  9. Zhou S (2021) Research on local topology tracking of power grid based on graph theory. Secur Commun Netw 2021:7027907. https://doi.org/10.1155/2021/7027907

    Article  Google Scholar 

  10. Alonso M, Turanzas J, Amaris H, Ledo AT (2021) Cyber-physical vulnerability assessment in smart grids based on multilayer complex networks. Sensors. https://doi.org/10.3390/s21175826

    Article  PubMed  PubMed Central  Google Scholar 

  11. Newman MEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci 98:404–409. https://doi.org/10.1073/pnas.98.2.404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  CAS  Google Scholar 

  13. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. doi:https://doi.org/10.1038/nrn2575

    Article  CAS  PubMed  Google Scholar 

  14. Briggs RG, Conner AK, Baker CM, Burks JD, Glenn CA, Sali G, Battiste JD, O’Donoghue DL, Sughrue ME (2018) A connectomic Atlas of the human cerebrum-chapter 18: the connectional anatomy of human brain networks. Oper Neurosurg 15:S470–S480. https://doi.org/10.1093/ons/opy272

    Article  Google Scholar 

  15. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  16. Farahani FV, Karwowski W, Lighthall NR (2019) Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front Neurosci 13:585. https://doi.org/10.3389/fnins.2019.00585

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hart MG, Ypma RJF, Romero-Garcia R, Price SJ, Suckling J (2016) Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery. J Neurosurg 124:1665–1678. https://doi.org/10.3171/2015.4.JNS142683

    Article  PubMed  Google Scholar 

  18. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Article  Google Scholar 

  19. Oldham S, Fulcher B, Parkes L, Arnatkevic̆iūtė A, Suo C, Fornito A (2019) Consistency and differences between centrality measures across distinct classes of networks. PLoS ONE 14:e0220061. doi:https://doi.org/10.1371/journal.pone.0220061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahsan SA, Chendeb K, Briggs RG, Fletcher LR, Jones RG, Chakraborty AR, Nix CE, Jacobs CC, Lack AM, Griffin DT, Teo C, Sughrue ME (2020) Beyond eloquence and onto centrality: a new paradigm in planning supratentorial neurosurgery. J Neurooncol 146:229–238. doi:https://doi.org/10.1007/s11060-019-03327-4

    Article  PubMed  Google Scholar 

  21. Senanayake U, Piraveenan M, Zomaya A (2015) The pagerank-index: going beyond citation counts in quantifying scientific impact of researchers. PLoS ONE 10:e0134794

    Article  Google Scholar 

  22. Gorgolewski K, Durnez J, Poldrack R (2017) Preprocessed consortium for neuropsychiatric phenomics dataset. F1000Res. https://doi.org/10.12688/f1000research.11964.2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Doyen S, Nicholas P, Poologaindran A, Crawford L, Young IM, Romero-Garcia R, Sughrue ME (2021) Connectivity-based parcellation of normal and anatomically distorted human cerebral cortex. Hum Brain Mapp. doi:https://doi.org/10.1002/hbm.25728

    Article  PubMed  PubMed Central  Google Scholar 

  24. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178. doi:https://doi.org/10.1038/nature18933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165. doi:https://doi.org/10.1152/jn.00338.2011

    Article  PubMed  Google Scholar 

  26. Sandhu Z, Tanglay O, Young IM, Briggs RG, Bai MY, Larsen ML, Conner AK, Dhanaraj V, Lin YH, Hormovas J, Fonseka RD, Glenn CA, Sughrue ME (2021) Parcellation-based anatomic modeling of the default mode network. Brain Behav 11:e01976. doi:https://doi.org/10.1002/brb3.1976

    Article  PubMed  Google Scholar 

  27. Akiki TJ, Abdallah CG (2019) Determining the hierarchical architecture of the human brain using subject-level clustering of functional networks. Sci Rep 9:19290. https://doi.org/10.1038/s41598-019-55738-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coomans MB, van der Linden SD, Gehring K, Taphoorn MJB (2019) Treatment of cognitive deficits in brain tumour patients: current status and future directions. Curr Opin Oncol 31:540–547. doi:https://doi.org/10.1097/CCO.0000000000000581

    Article  PubMed  PubMed Central  Google Scholar 

  29. Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Lopes M, Mitchell M-C, Sichez J-P, Van Effenterre P (2003) Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J Neurol Neurosurg Psychiatr 74:901–907. https://doi.org/10.1136/jnnp.74.7.901

    Article  CAS  Google Scholar 

  30. Herbet G (2021) Should complex cognitive functions be mapped with direct electrostimulation in wide-awake surgery? A network perspective. Front Neurol. https://doi.org/10.3389/fneur.2021.635439

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sporns O (2018) Graph theory methods: applications in brain networks. Dialogues Clin Neurosci 20:111–121. doi:https://doi.org/10.31887/DCNS.2018.20.2/osporns

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hansen DL, Shneiderman B, Smith MA, Himelboim I (2020) Chapter 3—social network analysis: measuring, mapping, and modeling collections of connections. In: Hansen DL, Shneiderman B, Smith MA, Himelboim I (eds) Analyzing social media networks with NodeXL, 2nd edn. Morgan Kaufmann, Burlington, pp 31–51

    Chapter  Google Scholar 

  33. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30:107–117. https://doi.org/10.1016/S0169-7552(98)00110-X

    Article  Google Scholar 

  34. Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2:113–120. doi:https://doi.org/10.1080/0022250X.1972.9989806

    Article  Google Scholar 

  35. Zuo X-N, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2011) Network centrality in the human functional connectome. Cereb Cortex 22:1862–1875. https://doi.org/10.1093/cercor/bhr269

    Article  PubMed  Google Scholar 

  36. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Bezgin G, Eickhoff SB, Castellanos FX, Petrides M, Jefferies E, Smallwood J (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci 113:12574–12579. https://doi.org/10.1073/pnas.1608282113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baker CM, Burks JD, Briggs RG, Stafford J, Conner AK, Glenn CA, Sali G, McCoy TM, Battiste JD, O’Donoghue DL, Sughrue ME (2018) A connectomic Atlas of the human cerebrum-chapter 9: the occipital lobe. Oper Neurosurg 15:S372–S406. https://doi.org/10.1093/ons/opy263

    Article  Google Scholar 

  38. Insausti R, Amaral D (2004) Hippocampal formation. Hum Nerv Syst 2:871–914

    Article  Google Scholar 

  39. Aminoff EM, Kveraga K, Bar M (2013) The role of the parahippocampal cortex in cognition. Trends Cogn Sci 17:379–390. doi:https://doi.org/10.1016/j.tics.2013.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  40. Visser M, Jefferies E, Embleton KV, Lambon Ralph MA (2012) Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J Cogn Neurosci 24:1766–1778

    Article  Google Scholar 

  41. du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, Samson Y, Zhang S, Dubois B (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain 129:3315–3328. doi:https://doi.org/10.1093/brain/awl244

    Article  PubMed  Google Scholar 

  42. Coen SJ, Hobson AR, Aziz Q (2012) Chapter 23—processing of gastrointestinal sensory signals in the brain. In: Johnson LR, Ghishan FK, Kaunitz JD, Merchant JL, Said HM, Wood JD (eds) Physiology of the gastrointestinal tract, 5th edn. Academic Press, Boston, pp 689–702

    Chapter  Google Scholar 

  43. Davidson PSR, Anaki D, Ciaramelli E, Cohn M, Kim ASN, Murphy KJ, Troyer AK, Moscovitch M, Levine B (2008) Does lateral parietal cortex support episodic memory? Evidence from focal lesion patients. Neuropsychologia 46:1743–1755. doi:https://doi.org/10.1016/j.neuropsychologia.2008.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Front Neuroinform 3:37–37. doi:https://doi.org/10.3389/neuro.11.037.2009

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16:159–172. doi:https://doi.org/10.1038/nrn3901

    Article  CAS  PubMed  Google Scholar 

  46. Liang X, Zou Q, He Y, Yang Y (2013) Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci 110:1929–1934. https://doi.org/10.1073/pnas.1214900110

    Article  PubMed  PubMed Central  Google Scholar 

  47. Aben HP, Biessels GJ, Weaver NA, Spikman JM, Visser-Meily JMA, de Kort PLM, Reijmer YD (2019) Extent to which network hubs are affected by ischemic stroke predicts cognitive recovery. Stroke 50:2768–2774. https://doi.org/10.1161/strokeaha.119.025637

    Article  CAS  PubMed  Google Scholar 

  48. Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci 96:3257–3262. https://doi.org/10.1073/pnas.96.6.3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

OT, SD and MES contributed to the study conception and design. Material preparation, data collection and analysis were performed by HMT, PJN, and OT. The first draft of the manuscript was written by OT and IMY and all authors commented on previous versions of the manuscript. The edited and revised draft of the manuscript was written by ND and OT. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Michael E. Sughrue.

Ethics declarations

Conflict of interest

Isabella M. Young, Hugh M. Taylor, Peter J. Nicholas, Stéphane Doyen, and Michael E. Sughrue are employees of and shareholders in Omniscient Neurotechnology. Onur Tanglay is an employee of Omniscient Neurotechnology. Nicholas B. Dadario has no disclosures.

Ethical approval

The data used in the study are from a publicly available dataset. The procedures in the original study were approved by the Institutional Review Boards at UCLA and the Los Angeles Country Department of Mental Health.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11060_2021_3935_MOESM1_ESM.docx

Supplementary file1 Supplementary Results. The PageRank, Eigenvector, EP Difference, and Clustering Coefficient ranks for each parcel across 81 subjects (DOCX 218 kb)

11060_2021_3935_MOESM2_ESM.xlsx

Supplementary file2 Supplementary Methods. A description of the imaging pre-processing pipeline and the creation of the personalized parcellation scheme (XLSX 1389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanglay, O., Young, I.M., Dadario, N.B. et al. Eigenvector PageRank difference as a measure to reveal topological characteristics of the brain connectome for neurosurgery. J Neurooncol 157, 49–61 (2022). https://doi.org/10.1007/s11060-021-03935-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03935-z

Keywords

Navigation