Skip to main content
Log in

Embryonal tumors with multi-layered rosettes: a disease of dysregulated miRNAs

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

ETMRs are highly lethal, pediatric embryonal brain tumors, previously classified as various histologic diagnoses including supratentorial primitive neuroectodermal tumors (sPNET) and CNS PNET. With recognition that these tumors harbor recurrent amplification of a novel oncogenic miRNA cluster on chr19, C19MC, ETMRs were designated as a distinct biological and molecular entity with a spectrum of histologic and clinical manifestations.

Methods

We reviewed published literature describing clinical presentation, the genetic and epigenetic drivers of oncogenesis, and recent therapeutic strategies adopted to combat these aggressive tumors.

Results

As a consequence of C19MC amplification, ETMRs upregulate several oncogenic and pluripotency proteins, including LIN28A, DNMT3B and MYCN, that confer a unique epigenetic signature reminiscent of nascent embryonic stem cells. In this review, we focus on the dysregulation of miRNAs in ETMR, the major pathogenic mechanism identified in this disease.

Conclusion

Despite the use of multi-modal therapeutic regimens, ETMR patients have dismal survival. Understanding the unique biology of these tumors has provided new insights towards novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Eberhart CG, Brat DJ, Cohen KJ, Burger PC (2000) Pediatric neuroblastic brain tumors containing abundant neuropil and true rosettes. Pediatr Dev Pathol 3(4):346–352. https://doi.org/10.1007/s100249910049

    Article  CAS  PubMed  Google Scholar 

  2. Li M, Lee KF, Lu Y, Clarke I, Shih D, Eberhart C, Collins VP, Van Meter T, Picard D, Zhou L, Boutros PC, Modena P, Liang ML, Scherer SW, Bouffet E, Rutka JT, Pomeroy SL, Lau CC, Taylor MD, Gajjar A, Dirks PB, Hawkins CE, Huang A (2009) Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16(6):533–546. https://doi.org/10.1016/j.ccr.2009.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pfister S, Remke M, Castoldi M, Bai AH, Muckenthaler MU, Kulozik A, von Deimling A, Pscherer A, Lichter P, Korshunov A (2009) Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol 117(4):457–464. https://doi.org/10.1007/s00401-008-0467-y

    Article  CAS  PubMed  Google Scholar 

  4. Spence T, Perotti C, Sin-Chan P, Picard D, Wu W, Singh A, Anderson C, Blough MD, Cairncross JG, Lafay-Cousin L, Strother D, Hawkins C, Narendran A, Huang A, Chan JA (2014) A novel C19MC amplified cell line links Lin28/let-7 to mTOR signaling in embryonal tumor with multilayered rosettes. Neuro Oncol 16(1):62–71. https://doi.org/10.1093/neuonc/not162

    Article  CAS  PubMed  Google Scholar 

  5. Korshunov A, Sturm D, Ryzhova M, Hovestadt V, Gessi M, Jones DT, Remke M, Northcott P, Perry A, Picard D, Rosenblum M, Antonelli M, Aronica E, Schuller U, Hasselblatt M, Woehrer A, Zheludkova O, Kumirova E, Puget S, Taylor MD, Giangaspero F, Peter Collins V, von Deimling A, Lichter P, Huang A, Pietsch T, Pfister SM, Kool M (2014) Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol 128(2):279–289. https://doi.org/10.1007/s00401-013-1228-0

    Article  PubMed  Google Scholar 

  6. Paulus W, Kleihues P (2010) Genetic profiling of CNS tumors extends histological classification. Acta Neuropathol 120(2):269–270. https://doi.org/10.1007/s00401-010-0710-1

    Article  PubMed  Google Scholar 

  7. Spence T, Sin-Chan P, Picard D, Barszczyk M, Hoss K, Lu M, Kim SK, Ra YS, Nakamura H, Fangusaro J, Hwang E, Kiehna E, Toledano H, Wang Y, Shi Q, Johnston D, Michaud J, La Spina M, Buccoliero AM, Adamek D, Camelo-Piragua S, Peter Collins V, Jones C, Kabbara N, Jurdi N, Varlet P, Perry A, Scharnhorst D, Fan X, Muraszko KM, Eberhart CG, Ng HK, Gururangan S, Van Meter T, Remke M, Lafay-Cousin L, Chan JA, Sirachainan N, Pomeroy SL, Clifford SC, Gajjar A, Shago M, Halliday W, Taylor MD, Grundy R, Lau CC, Phillips J, Bouffet E, Dirks PB, Hawkins CE, Huang A (2014) CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathol 128(2):291–303. https://doi.org/10.1007/s00401-014-1291-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lambo S, Grobner SN, Rausch T, Waszak SM, Schmidt C, Gorthi A, Romero JC, Mauermann M, Brabetz S, Krausert S, Buchhalter I, Koster J, Zwijnenburg DA, Sill M, Hubner JM, Mack N, Schwalm B, Ryzhova M, Hovestadt V, Papillon-Cavanagh S, Chan JA, Landgraf P, Ho B, Milde T, Witt O, Ecker J, Sahm F, Sumerauer D, Ellison DW, Orr BA, Darabi A, Haberler C, Figarella-Branger D, Wesseling P, Schittenhelm J, Remke M, Taylor MD, Gil-da-Costa MJ, Lastowska M, Grajkowska W, Hasselblatt M, Hauser P, Pietsch T, Uro-Coste E, Bourdeaut F, Masliah-Planchon J, Rigau V, Alexandrescu S, Wolf S, Li XN, Schuller U, Snuderl M, Karajannis MA, Giangaspero F, Jabado N, von Deimling A, Jones DTW, Korbel JO, von Hoff K, Lichter P, Huang A, Bishop AJR, Pfister SM, Korshunov A, Kool M (2019) The molecular landscape of ETMR at diagnosis and relapse. Nature 576(7786):274–280. https://doi.org/10.1038/s41586-019-1815-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Picard D, Miller S, Hawkins CE, Bouffet E, Rogers HA, Chan TS, Kim SK, Ra YS, Fangusaro J, Korshunov A, Toledano H, Nakamura H, Hayden JT, Chan J, Lafay-Cousin L, Hu P, Fan X, Muraszko KM, Pomeroy SL, Lau CC, Ng HK, Jones C, Van Meter T, Clifford SC, Eberhart C, Gajjar A, Pfister SM, Grundy RG, Huang A (2012) Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncol 13(8):838–848. https://doi.org/10.1016/S1470-2045(12)70257-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  11. Adamek D, Sofowora KD, Cwiklinska M, Herman-Sucharska I, Kwiatkowski S (2013) Embryonal tumor with abundant neuropil and true rosettes: an autopsy case-based update and review of the literature. Childs Nerv Syst 29(5):849–854. https://doi.org/10.1007/s00381-013-2037-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Horwitz M, Dufour C, Leblond P, Bourdeaut F, Faure-Conter C, Bertozzi AI, Delisle MB, Palenzuela G, Jouvet A, Scavarda D, Vinchon M, Padovani L, Gaudart J, Branger DF, Andre N (2016) Embryonal tumors with multilayered rosettes in children: the SFCE experience. Childs Nerv Syst 32(2):299–305. https://doi.org/10.1007/s00381-015-2920-2

    Article  PubMed  Google Scholar 

  13. Murphy MN, Dhalla SS, Diocee M, Halliday W, Wiseman NE, deSa DJ (1987) Congenital ependymoblastoma presenting as a sacrococcygeal mass in a newborn: an immunohistochemical, light and electron microscopic study. Clin Neuropathol 6(4):169–173

    CAS  PubMed  Google Scholar 

  14. Lorentzen M, Hagerstrand I (1980) Congenital ependymoblastoma. Acta Neuropathol 49(1):71–74. https://doi.org/10.1007/BF00692223

    Article  CAS  PubMed  Google Scholar 

  15. Grassham CD, Rady S, Foster K, SantaCruz KS, Kuttesch JF, Maxwell JR (2019) A Congenital Case of Ependymoblastoma: A Rare and Aggressive Brain Tumor. J Pediatr Hematol Oncol 41(1):e34–e37. https://doi.org/10.1097/MPH.0000000000001117

    Article  PubMed  Google Scholar 

  16. Chen SH, Ho CS, Chiu NC, Chen HJ, Lin YJ (2017) Rare Brain Tumor in a Neonate. J Med Ultrasound 25(4):240–243. https://doi.org/10.1016/j.jmu.2017.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gessi M, Giangaspero F, Lauriola L, Gardiman M, Scheithauer BW, Halliday W, Hawkins C, Rosenblum MK, Burger PC, Eberhart CG (2009) Embryonal tumors with abundant neuropil and true rosettes: a distinctive CNS primitive neuroectodermal tumor. Am J Surg Pathol 33(2):211–217. https://doi.org/10.1097/PAS.0b013e318186235b

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sato H, Terakawa Y, Tsuyuguchi N, Kuwae Y, Ohsawa M, Ohata K (2015) Embryonal tumor with abundant neuropil and true rosettes in the brainstem: case report. J Neurosurg Pediatr 16(3):291–295. https://doi.org/10.3171/2015.3.PEDS14727

    Article  PubMed  Google Scholar 

  19. Honnorat M, Al-Karmi S, Hawkins C, Johnston D, Gerstle T, Schechter T, Huang A, Bouffet E (2020) Presacral medulloepithelioma: case report and literature review. J Pediatr Hematol Oncol 42(3):244–247. https://doi.org/10.1097/MPH.0000000000001460

    Article  PubMed  Google Scholar 

  20. Wang B, Gogia B, Fuller GN, Ketonen LM (2018) Embryonal tumor with multilayered rosettes, C19MC-altered: clinical, pathological, and neuroimaging findings. J Neuroimaging 28(5):483–489. https://doi.org/10.1111/jon.12524

    Article  PubMed  Google Scholar 

  21. Shah AH, Khatib Z, Niazi T (2018) Extracranial extra-CNS spread of embryonal tumor with multilayered rosettes (ETMR): case series and systematic review. Childs Nerv Syst 34(4):649–654. https://doi.org/10.1007/s00381-017-3657-x

    Article  PubMed  Google Scholar 

  22. Abedalthagafi M, Aldandan SW, Alrayis M, Ahmed AA (2017) Lymph node metastasis of presacral ependymoblastoma in a young child. J Clin Neurosci 40:64–66. https://doi.org/10.1016/j.jocn.2017.01.029

    Article  PubMed  Google Scholar 

  23. Rubens J, Gosiengfiao Y, Tomita T, Jacobsohn DA, Fangusaro J (2011) Long-term survival in a pediatric patient with supratentorial primitive neuro-ectodermal tumor and extraneural metastasis at diagnosis. Pediatr Blood Cancer 57(2):341–344. https://doi.org/10.1002/pbc.22995

    Article  PubMed  Google Scholar 

  24. Judkins AR, Ellison DW (2010) Ependymoblastoma: dear, damned, distracting diagnosis, farewell!*. Brain Pathol 20(1):133–139. https://doi.org/10.1111/j.1750-3639.2008.00253.x

    Article  PubMed  Google Scholar 

  25. Jakobiec FA, Kool M, Stagner AM, Pfister SM, Eagle RC, Proia AD, Korshunov A (2015) Intraocular Medulloepitheliomas and Embryonal Tumors With Multilayered Rosettes of the Brain: Comparative Roles of LIN28A and C19MC. Am J Ophthalmol 159(6):1065–1074 e1061. https://doi.org/10.1016/j.ajo.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  26. Ceccom J, Bourdeaut F, Loukh N, Rigau V, Milin S, Takin R, Richer W, Uro-Coste E, Couturier J, Bertozzi AI, Delattre O, Delisle MB (2014) Embryonal tumor with multilayered rosettes: diagnostic tools update and review of the literature. Clin Neuropathol 33(1):15–22. https://doi.org/10.5414/NP300636

    Article  PubMed  Google Scholar 

  27. Korshunov A, Remke M, Gessi M, Ryzhova M, Hielscher T, Witt H, Tobias V, Buccoliero AM, Sardi I, Gardiman MP, Bonnin J, Scheithauer B, Kulozik AE, Witt O, Mork S, von Deimling A, Wiestler OD, Giangaspero F, Rosenblum M, Pietsch T, Lichter P, Pfister SM (2010) Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol 120(2):253–260. https://doi.org/10.1007/s00401-010-0688-8

    Article  PubMed  Google Scholar 

  28. Nobusawa S, Yokoo H, Hirato J, Kakita A, Takahashi H, Sugino T, Tasaki K, Itoh H, Hatori T, Shimoyama Y, Nakazawa A, Nishizawa S, Kishimoto H, Matsuoka K, Nakayama M, Okura N, Nakazato Y (2012) Analysis of chromosome 19q13.42 amplification in embryonal brain tumors with ependymoblastic multilayered rosettes. Brain Pathol 22(5):689–697. https://doi.org/10.1111/j.1750-3639.2012.00574.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rao S, Rajeswarie RT, Chickabasaviah Yasha T, Nandeesh BN, Arivazhagan A, Santosh V (2017) LIN28A, a sensitive immunohistochemical marker for Embryonal Tumor with Multilayered Rosettes (ETMR), is also positive in a subset of Atypical Teratoid/Rhabdoid Tumor (AT/RT). Childs Nerv Syst 33(11):1953–1959. https://doi.org/10.1007/s00381-017-3551-6

    Article  PubMed  Google Scholar 

  30. Sin-Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I, Du Y, Lu M, Patel N, Torchia J, Popovski D, Fouladi M, Guilhamon P, Hansford JR, Leary S, Hoffman LM, Mulcahy Levy JM, Lassaletta A, Solano-Paez P, Rivas E, Reddy A, Gillespie GY, Gupta N, Van Meter TE, Nakamura H, Wong TT, Ra YS, Kim SK, Massimi L, Grundy RG, Fangusaro J, Johnston D, Chan J, Lafay-Cousin L, Hwang EI, Wang Y, Catchpoole D, Michaud J, Ellezam B, Ramanujachar R, Lindsay H, Taylor MD, Hawkins CE, Bouffet E, Jabado N, Singh SK, Kleinman CL, Barsyte-Lovejoy D, Li XN, Dirks PB, Lin CY, Mack SC, Rich JN, Huang A (2019) A C19MC-LIN28A-MYCN oncogenic circuit driven by hijacked super-enhancers is a distinct therapeutic vulnerability in ETMRs: a lethal brain tumor. Cancer Cell 36(1):51-67 e57. https://doi.org/10.1016/j.ccell.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  31. Kalani MY, Cheshier SH, Cord BJ, Bababeygy SR, Vogel H, Weissman IL, Palmer TD, Nusse R (2008) Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci U S A 105(44):16970–16975. https://doi.org/10.1073/pnas.0808616105

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wexler EM, Paucer A, Kornblum HI, Palmer TD, Geschwind DH (2009) Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 27(5):1130–1141. https://doi.org/10.1002/stem.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126(6):1211–1223

    CAS  PubMed  Google Scholar 

  34. Gujral TS, Chan M, Peshkin L, Sorger PK, Kirschner MW, MacBeath G (2014) A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell 159(4):844–856. https://doi.org/10.1016/j.cell.2014.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135(15):2489–2503. https://doi.org/10.1242/dev.009324

    Article  CAS  PubMed  Google Scholar 

  36. Briscoe J, Ericson J (1999) The specification of neuronal identity by graded Sonic Hedgehog signalling. Semin Cell Dev Biol 10(3):353–362. https://doi.org/10.1006/scdb.1999.0295

    Article  CAS  PubMed  Google Scholar 

  37. Tickle C (2015) How the embryo makes a limb: determination, polarity and identity. J Anat 227(4):418–430. https://doi.org/10.1111/joa.12361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smalley MJ, Dale TC (1999) Wnt signalling in mammalian development and cancer. Cancer Metastasis Rev 18(2):215–230. https://doi.org/10.1023/a:1006369223282

    Article  CAS  PubMed  Google Scholar 

  39. Carballo GB, Honorato JR, de Lopes GPF, Spohr T (2018) A highlight on Sonic hedgehog pathway. Cell Commun Signal 16(1):11. https://doi.org/10.1186/s12964-018-0220-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Amerongen R, Fuerer C, Mizutani M, Nusse R (2012) Wnt5a can both activate and repress Wnt/beta-catenin signaling during mouse embryonic development. Dev Biol 369(1):101–114. https://doi.org/10.1016/j.ydbio.2012.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Asem MS, Buechler S, Wates RB, Miller DL, Stack MS (2016) Wnt5a signaling in cancer. Cancers (Basel). https://doi.org/10.3390/cancers8090079

    Article  Google Scholar 

  42. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850. https://doi.org/10.1038/nature03319

    Article  CAS  PubMed  Google Scholar 

  43. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751. https://doi.org/10.1038/onc.2010.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen T, You Y, Jiang H, Wang ZZ (2017) Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 232(12):3261–3272. https://doi.org/10.1002/jcp.25797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Binda E, Visioli A, Giani F, Trivieri N, Palumbo O, Restelli S, Dezi F, Mazza T, Fusilli C, Legnani F, Carella M, Di Meco F, Duggal R, Vescovi AL (2017) Wnt5a Drives an Invasive Phenotype in Human Glioblastoma Stem-like Cells. Cancer Res 77(4):996–1007. https://doi.org/10.1158/0008-5472.CAN-16-1693

    Article  CAS  PubMed  Google Scholar 

  46. Neumann JE, Wefers AK, Lambo S, Bianchi E, Bockstaller M, Dorostkar MM, Meister V, Schindler P, Korshunov A, von Hoff K, Nowak J, Warmuth-Metz M, Schneider MR, Renner-Muller I, Merk DJ, Shakarami M, Sharma T, Chavez L, Glass R, Chan JA, Taketo MM, Neumann P, Kool M, Schuller U (2017) A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat Med 23(10):1191–1202. https://doi.org/10.1038/nm.4402

    Article  CAS  PubMed  Google Scholar 

  47. Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, Sill M, Buchhalter I, Northcott PA, Leis I, Ryzhova M, Koelsche C, Pfaff E, Allen SJ, Balasubramanian G, Worst BC, Pajtler KW, Brabetz S, Johann PD, Sahm F, Reimand J, Mackay A, Carvalho DM, Remke M, Phillips JJ, Perry A, Cowdrey C, Drissi R, Fouladi M, Giangaspero F, Lastowska M, Grajkowska W, Scheurlen W, Pietsch T, Hagel C, Gojo J, Lotsch D, Berger W, Slavc I, Haberler C, Jouvet A, Holm S, Hofer S, Prinz M, Keohane C, Fried I, Mawrin C, Scheie D, Mobley BC, Schniederjan MJ, Santi M, Buccoliero AM, Dahiya S, Kramm CM, von Bueren AO, von Hoff K, Rutkowski S, Herold-Mende C, Fruhwald MC, Milde T, Hasselblatt M, Wesseling P, Rossler J, Schuller U, Ebinger M, Schittenhelm J, Frank S, Grobholz R, Vajtai I, Hans V, Schneppenheim R, Zitterbart K, Collins VP, Aronica E, Varlet P, Puget S, Dufour C, Grill J, Figarella-Branger D, Wolter M, Schuhmann MU, Shalaby T, Grotzer M, van Meter T, Monoranu CM, Felsberg J, Reifenberger G, Snuderl M, Forrester LA, Koster J, Versteeg R, Volckmann R, van Sluis P, Wolf S, Mikkelsen T, Gajjar A, Aldape K, Moore AS, Taylor MD, Jones C, Jabado N, Karajannis MA, Eils R, Schlesner M, Lichter P, von Deimling A, Pfister SM, Ellison DW, Korshunov A, Kool M (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164(5):1060–1072. https://doi.org/10.1016/j.cell.2016.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, Kratz A, Wefers AK, Huang K, Pajtler KW, Schweizer L, Stichel D, Olar A, Engel NW, Lindenberg K, Harter PN, Braczynski AK, Plate KH, Dohmen H, Garvalov BK, Coras R, Holsken A, Hewer E, Bewerunge-Hudler M, Schick M, Fischer R, Beschorner R, Schittenhelm J, Staszewski O, Wani K, Varlet P, Pages M, Temming P, Lohmann D, Selt F, Witt H, Milde T, Witt O, Aronica E, Giangaspero F, Rushing E, Scheurlen W, Geisenberger C, Rodriguez FJ, Becker A, Preusser M, Haberler C, Bjerkvig R, Cryan J, Farrell M, Deckert M, Hench J, Frank S, Serrano J, Kannan K, Tsirigos A, Bruck W, Hofer S, Brehmer S, Seiz-Rosenhagen M, Hanggi D, Hans V, Rozsnoki S, Hansford JR, Kohlhof P, Kristensen BW, Lechner M, Lopes B, Mawrin C, Ketter R, Kulozik A, Khatib Z, Heppner F, Koch A, Jouvet A, Keohane C, Muhleisen H, Mueller W, Pohl U, Prinz M, Benner A, Zapatka M, Gottardo NG, Driever PH, Kramm CM, Muller HL, Rutkowski S, von Hoff K, Fruhwald MC, Gnekow A, Fleischhack G, Tippelt S, Calaminus G, Monoranu CM, Perry A, Jones C, Jacques TS, Radlwimmer B, Gessi M, Pietsch T, Schramm J, Schackert G, Westphal M, Reifenberger G, Wesseling P, Weller M, Collins VP, Blumcke I, Bendszus M, Debus J, Huang A, Jabado N, Northcott PA, Paulus W, Gajjar A, Robinson GW, Taylor MD, Jaunmuktane Z, Ryzhova M, Platten M, Unterberg A, Wick W, Karajannis MA, Mittelbronn M, Acker T, Hartmann C, Aldape K, Schuller U, Buslei R, Lichter P, Kool M, Herold-Mende C, Ellison DW, Hasselblatt M, Snuderl M, Brandner S, Korshunov A, von Deimling A, Pfister SM (2018) DNA methylation-based classification of central nervous system tumours. Nature 555(7697):469–474. https://doi.org/10.1038/nature26000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366(6453):362–365. https://doi.org/10.1038/366362a0

    Article  CAS  PubMed  Google Scholar 

  50. Madakashira BP, Sadler KC (2017) DNA methylation, nuclear organization, and cancer. Front Genet 8:76. https://doi.org/10.3389/fgene.2017.00076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kleinman CL, Gerges N, Papillon-Cavanagh S, Sin-Chan P, Pramatarova A, Quang DA, Adoue V, Busche S, Caron M, Djambazian H, Bemmo A, Fontebasso AM, Spence T, Schwartzentruber J, Albrecht S, Hauser P, Garami M, Klekner A, Bognar L, Montes JL, Staffa A, Montpetit A, Berube P, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel PM, Duchaine T, Perotti C, Fleming A, Faury D, Remke M, Gallo M, Dirks P, Taylor MD, Sladek R, Pastinen T, Chan JA, Huang A, Majewski J, Jabado N (2014) Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat Genet 46(1):39–44. https://doi.org/10.1038/ng.2849

    Article  CAS  PubMed  Google Scholar 

  52. Jin B, Tao Q, Peng J, Soo HM, Wu W, Ying J, Fields CR, Delmas AL, Liu X, Qiu J, Robertson KD (2008) DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet 17(5):690–709. https://doi.org/10.1093/hmg/ddm341

    Article  CAS  PubMed  Google Scholar 

  53. Watanabe D, Uchiyama K, Hanaoka K (2006) Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development. Neuroscience 142(3):727–737. https://doi.org/10.1016/j.neuroscience.2006.07.053

    Article  CAS  PubMed  Google Scholar 

  54. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257. https://doi.org/10.1016/s0092-8674(00)81656-6

    Article  CAS  PubMed  Google Scholar 

  55. Chedin F (2011) The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol Transl Sci 101:255–285. https://doi.org/10.1016/B978-0-12-387685-0.00007-X

    Article  CAS  PubMed  Google Scholar 

  56. Wong KK, Lawrie CH, Green TM (2019) Oncogenic roles and inhibitors of DNMT1, DNMT3A, and DNMT3B in acute myeloid leukaemia. Biomark Insights 14:1177271919846454. https://doi.org/10.1177/1177271919846454

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O’Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363(25):2424–2433. https://doi.org/10.1056/NEJMoa1005143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770. https://doi.org/10.1038/ng1590

    Article  CAS  PubMed  Google Scholar 

  59. Bortolin-Cavaille ML, Dance M, Weber M, Cavaille J (2009) C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 37(10):3464–3473. https://doi.org/10.1093/nar/gkp205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Balzeau J, Menezes MR, Cao S, Hagan JP (2017) The LIN28/let-7 pathway in cancer. Front Genet 8:31. https://doi.org/10.3389/fgene.2017.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM, Ruzzo WL, Ware C, Radich JP, Gentleman R, Ruohola-Baker H, Tewari M (2008) MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26(10):2496–2505. https://doi.org/10.1634/stemcells.2008-0356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE, Cavaille J (2010) The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 19(18):3566–3582. https://doi.org/10.1093/hmg/ddq272

    Article  CAS  PubMed  Google Scholar 

  64. Zovoilis A, Smorag L, Pantazi A, Engel W (2009) Members of the miR-290 cluster modulate in vitro differentiation of mouse embryonic stem cells. Differentiation 78(2–3):69–78. https://doi.org/10.1016/j.diff.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  65. Lichner Z, Pall E, Kerekes A, Pallinger E, Maraghechi P, Bosze Z, Gocza E (2011) The miR-290-295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells. Differentiation 81(1):11–24. https://doi.org/10.1016/j.diff.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  66. Xie L, Sadovsky Y (2016) The function of miR-519d in cell migration, invasion, and proliferation suggests a role in early placentation. Placenta 48:34–37. https://doi.org/10.1016/j.placenta.2016.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mong EF, Yang Y, Akat KM, Canfield J, VanWye J, Lockhart J, Tsibris JCM, Schatz F, Lockwood CJ, Tuschl T, Kayisli UA, Totary-Jain H (2020) Chromosome 19 microRNA cluster enhances cell reprogramming by inhibiting epithelial-to-mesenchymal transition. Sci Rep 10(1):3029. https://doi.org/10.1038/s41598-020-59812-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Setty BA, Jinesh GG, Arnold M, Pettersson F, Cheng CH, Cen L, Yoder SJ, Teer JK, Flores ER, Reed DR, Brohl AS (2020) The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss. PLoS Genet 16(4):e1008642. https://doi.org/10.1371/journal.pgen.1008642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ward A, Shukla K, Balwierz A, Soons Z, Konig R, Sahin O, Wiemann S (2014) MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER + breast cancer. J Pathol 233(4):368–379. https://doi.org/10.1002/path.4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fornari F, Milazzo M, Chieco P, Negrini M, Marasco E, Capranico G, Mantovani V, Marinello J, Sabbioni S, Callegari E, Cescon M, Ravaioli M, Croce CM, Bolondi L, Gramantieri L (2012) In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol 227(3):275–285. https://doi.org/10.1002/path.3995

    Article  CAS  PubMed  Google Scholar 

  71. Suzuki M, Mizuno A (2004) A novel human Cl(-) channel family related to Drosophila flightless locus. J Biol Chem 279(21):22461–22468. https://doi.org/10.1074/jbc.M313813200

    Article  CAS  PubMed  Google Scholar 

  72. Guo J, Qu H, Chen Y, Xia J (2017) The role of RNA-binding protein tristetraprolin in cancer and immunity. Med Oncol 34(12):196. https://doi.org/10.1007/s12032-017-1055-6

    Article  CAS  PubMed  Google Scholar 

  73. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35(3):215–217. https://doi.org/10.1038/ng1253

    Article  CAS  PubMed  Google Scholar 

  74. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  75. Foulkes WD, Priest JR, Duchaine TF (2014) DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 14(10):662–672. https://doi.org/10.1038/nrc3802

    Article  CAS  PubMed  Google Scholar 

  76. Uro-Coste E, Masliah-Planchon J, Siegfried A, Blanluet M, Lambo S, Kool M, Roujeau T, Boetto S, Palenzuela G, Bertozzi AI, Gambart M, Coupier I, Oliver-Petit I, Golmard L, Julia S, Savagner F, Mohand-Oumoussa B, Tauziede-Espariat A, Delisle MB, Figarella-Branger D, Bourdeaut F, Rigau V (2019) ETMR-like infantile cerebellar embryonal tumors in the extended morphologic spectrum of DICER1-related tumors. Acta Neuropathol 137(1):175–177. https://doi.org/10.1007/s00401-018-1935-7

    Article  PubMed  Google Scholar 

  77. de Kock L, Priest JR, Foulkes WD, Alexandrescu S (2020) An update on the central nervous system manifestations of DICER1 syndrome. Acta Neuropathol 139(4):689–701. https://doi.org/10.1007/s00401-019-01997-y

    Article  CAS  PubMed  Google Scholar 

  78. Lambo S, von Hoff K, Korshunov A, Pfister SM, Kool M (2020) ETMR: a tumor entity in its infancy. Acta Neuropathol. https://doi.org/10.1007/s00401-020-02182-2

    Article  PubMed  PubMed Central  Google Scholar 

  79. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, O’Sullivan M, Lu J, Phillips LA, Lockhart VL, Shah SP, Tanwar PS, Mermel CH, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes TP, Llovet JM, Radich J, Mullighan CG, Golub TR, Sorensen PH, Daley GQ (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41(7):843–848. https://doi.org/10.1038/ng.392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97–100. https://doi.org/10.1126/science.1154040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Richards M, Tan SP, Tan JH, Chan WK, Bongso A (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22(1):51–64. https://doi.org/10.1634/stemcells.22-1-51

    Article  CAS  PubMed  Google Scholar 

  82. Viswanathan SR, Daley GQ (2010) Lin28: A microRNA regulator with a macro role. Cell 140(4):445–449. https://doi.org/10.1016/j.cell.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  83. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  84. Yang M, Yang SL, Herrlinger S, Liang C, Dzieciatkowska M, Hansen KC, Desai R, Nagy A, Niswander L, Moss EG, Chen JF (2015) Lin28 promotes the proliferative capacity of neural progenitor cells in brain development. Development 142(9):1616–1627. https://doi.org/10.1242/dev.120543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Herrlinger S, Shao Q, Yang M, Chang Q, Liu Y, Pan X, Yin H, Xie LW, Chen JF (2019) Lin28-mediated temporal promotion of protein synthesis is crucial for neural progenitor cell maintenance and brain development in mice. Development. https://doi.org/10.1242/dev.173765

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bianchi ME, Agresti A (2005) HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 15(5):496–506. https://doi.org/10.1016/j.gde.2005.08.007

    Article  CAS  PubMed  Google Scholar 

  87. Gieni RS, Hendzel MJ (2009) Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer. Biochem Cell Biol 87(5):711–746. https://doi.org/10.1139/O09-057

    Article  CAS  PubMed  Google Scholar 

  88. Korshunov A, Ryzhova M, Jones DT, Northcott PA, van Sluis P, Volckmann R, Koster J, Versteeg R, Cowdrey C, Perry A, Picard D, Rosenblum M, Giangaspero F, Aronica E, Schuller U, Hasselblatt M, Collins VP, von Deimling A, Lichter P, Huang A, Pfister SM, Kool M (2012) LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol 124(6):875–881. https://doi.org/10.1007/s00401-012-1068-3

    Article  PubMed  PubMed Central  Google Scholar 

  89. Padovani L, Andre N, Constine LS, Muracciole X (2012) Neurocognitive function after radiotherapy for paediatric brain tumours. Nat Rev Neurol 8(10):578–588. https://doi.org/10.1038/nrneurol.2012.182

    Article  CAS  PubMed  Google Scholar 

  90. Jaramillo S, Grosshans DR, Philip N, Varan A, Akyuz C, McAleer MF, Mahajan A, McGovern SL (2019) Radiation for ETMR: Literature review and case series of patients treated with proton therapy. Clin Transl Radiat Oncol 15:31–37. https://doi.org/10.1016/j.ctro.2018.11.002

    Article  PubMed  Google Scholar 

  91. Alexiou GA, Stefanaki K, Vartholomatos G, Sfakianos G, Prodromou N, Moschovi M (2013) Embryonal tumor with abundant neuropil and true rosettes: a systematic literature review and report of 2 new cases. J Child Neurol 28(12):1709–1715. https://doi.org/10.1177/0883073812471434

    Article  PubMed  Google Scholar 

  92. Henssen A, Thor T, Odersky A, Heukamp L, El-Hindy N, Beckers A, Speleman F, Althoff K, Schafers S, Schramm A, Sure U, Fleischhack G, Eggert A, Schulte JH (2013) BET bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget 4(11):2080–2095. https://doi.org/10.18632/oncotarget.1534

    Article  PubMed  PubMed Central  Google Scholar 

  93. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917. https://doi.org/10.1016/j.cell.2011.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Andrieu G, Belkina AC, Denis GV (2016) Clinical trials for BET inhibitors run ahead of the science. Drug Discov Today Technol 19:45–50. https://doi.org/10.1016/j.ddtec.2016.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  95. Schmidt C, Schubert NA, Brabetz S, Mack N, Schwalm B, Chan JA, Selt F, Herold-Mende C, Witt O, Milde T, Pfister SM, Korshunov A, Kool M (2017) Preclinical drug screen reveals topotecan, actinomycin D, and volasertib as potential new therapeutic candidates for ETMR brain tumor patients. Neuro Oncol 19(12):1607–1617. https://doi.org/10.1093/neuonc/nox093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang L, Rowe RG, Jaimes A, Yu C, Nam Y, Pearson DS, Zhang J, Xie X, Marion W, Heffron GJ, Daley GQ, Sliz P (2018) Small-molecule inhibitors disrupt let-7 oligouridylation and release the selective blockade of let-7 processing by LIN28. Cell Rep 23(10):3091–3101. https://doi.org/10.1016/j.celrep.2018.04.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by a Canadian Institutes of Health Research, Grant Number 137011. AH is a Canada Research Chair in Rare Childhood Brain Tumours (Tier 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghuram, N., Khan, S., Mumal, I. et al. Embryonal tumors with multi-layered rosettes: a disease of dysregulated miRNAs. J Neurooncol 150, 63–73 (2020). https://doi.org/10.1007/s11060-020-03633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03633-2

Keywords

Navigation