Skip to main content

Advertisement

Log in

Transferrin receptor 1 targeted optical imaging for identifying glioma margin in mouse models

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Objective

Optical molecular imaging technology that indiscriminately detects intracranial glioblastoma (GBM) can help neurosurgeons effectively remove tumor masses. Transferrin receptor 1 (TfR 1) is a diagnostic and therapeutic target in GBM. A TfR 1-targeted peptide, CRTIGPSVC (CRT), was shown to cross the blood brain barrier (BBB) and accumulate at high levels in GBM tissues. In this study, we synthesized a TfR 1-targeted near-infrared fluorescent (NIRF) probe, Cy5-CRT, for identifying the GBM tissue margin in mouse models.

Methods

We initially confirmed the overexpression of TfR 1 in GBM and the tumor-specific homing ability of Cy5-CRT in subcutaneous and orthotopic GBM mouse models. We then examined the feasibility of Cy5-CRT for identifying the tumor margin in orthotopic GBM xenografts. Finally, we compared Cy5-CRT with the clinically used fluorescein sodium in identifying tumor margins.

Results

Cy5-CRT specifically accumulated in GBM tissues and detected the tumor burden with exceptional contrast in mice with orthotopic GBM, enabling fluorescence-guided GBM resection under NIRF live imaging conditions. Importantly, Cy5-CRT recognized the GBM tissue margin more clearly than fluorescein sodium.

Conclusions

The TfR 1-targeted optical probe Cy5-CRT specifically differentiates tumor tissues from the surrounding normal brain with high sensitivity, indicating its potential application for the precise surgical removal of GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  Google Scholar 

  2. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, Group AL-GS (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401. https://doi.org/10.1016/S1470-2045(06)70665-9

    Article  CAS  PubMed  Google Scholar 

  3. Sauwen N, Acou M, Van Cauter S, Sima DM, Veraart J, Maes F, Himmelreich U, Achten E, Van Huffel S (2016) Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. Neuroimage Clin 12:753–764. https://doi.org/10.1016/j.nicl.2016.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swanson KI, Clark PA, Zhang RR, Kandela IK, Farhoud M, Weichert JP, Kuo JS (2015) Fluorescent cancer-selective alkylphosphocholine analogs for intraoperative glioma detection. Neurosurgery 76:115–123. https://doi.org/10.1227/NEU.0000000000000622

    Article  PubMed  PubMed Central  Google Scholar 

  5. Richter JCO, Haj-Hosseini N, Hallbeck M, Wardell K (2017) Combination of hand-held probe and microscopy for fluorescence guided surgery in the brain tumor marginal zone. Photodiagnosis Photodyn Ther 18:185–192. https://doi.org/10.1016/j.pdpdt.2017.01.188

    Article  PubMed  Google Scholar 

  6. Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P (2018) Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res 8:916–931

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tortorella S, Karagiannis TC (2014) Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol 247:291–307. https://doi.org/10.1007/s00232-014-9637-0

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Meng Y, Li C, Qian M, Huang R (2015) Receptor-Mediated Drug Delivery Systems Targeting to Glioma. Nanomaterials (Basel). https://doi.org/10.3390/nano6010003

    Article  PubMed Central  Google Scholar 

  9. Staquicini FI, Ozawa MG, Moya CA, Driessen WH, Barbu EM, Nishimori H, Soghomonyan S, Flores LG 2nd, Liang X, Paolillo V, Alauddin MM, Basilion JP, Furnari FB, Bogler O, Lang FF, Aldape KD, Fuller GN, Hook M, Gelovani JG, Sidman RL, Cavenee WK, Pasqualini R, Arap W (2011) Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest 121:161–173. https://doi.org/10.1172/JCI44798

    Article  CAS  PubMed  Google Scholar 

  10. Huang R, Vider J, Kovar JL, Olive DM, Mellinghoff IK, Mayer-Kuckuk P, Kircher MF, Blasberg RG (2012) Integrin alphavbeta3-targeted IRDye 800CW near-infrared imaging of glioblastoma. Clin Cancer Res 18:5731–5740. https://doi.org/10.1158/1078-0432.CCR-12-0374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li DP, Chen YS, Guo CC, Zhang XH, Sai K, Ke C, Zhang J, Jiang XB, Chen ZH, Lin FH, Yang QY, Wang J, Mu YG, Chen ZP (2019) Real-world management and survival outcomes of patients with newly diagnosed gliomas from a single institution in China: A retrospective cohort study. Glioma 2:96. https://doi.org/10.4103/glioma.glioma_14_19

    Article  Google Scholar 

  12. Yazdani M, Rumboldt Z, Tabesh A, Giglio P, Schiarelli C, Morgan PS, Spampinato MV (2018) Perilesional apparent diffusion coefficient in the preoperative evaluation of glioma grade. Clin Imaging 52:88–94. https://doi.org/10.1016/j.clinimag.2018.07.005

    Article  PubMed  Google Scholar 

  13. Hingtgen S, Figueiredo JL, Farrar C, Duebgen M, Martinez-Quintanilla J, Bhere D, Shah K (2013) Real-time multi-modality imaging of glioblastoma tumor resection and recurrence. J Neurooncol 111:153–161. https://doi.org/10.1007/s11060-012-1008-z

    Article  PubMed  Google Scholar 

  14. Lovato RM, Vitorino Araujo JL, Esteves Veiga JC (2017) Low-Cost Device for Fluorescein-Guided Surgery in Malignant Brain Tumor. World Neurosurg 104:61–67. https://doi.org/10.1016/j.wneu.2017.04.169

    Article  PubMed  Google Scholar 

  15. Wei L, Roberts DW, Sanai N, Liu JTC (2019) Visualization technologies for 5-ALA-based fluorescence-guided surgeries. J Neurooncol 141:495–505. https://doi.org/10.1007/s11060-018-03077-9

    Article  CAS  PubMed  Google Scholar 

  16. Jenkinson MD, Barone DG, Bryant A, Vale L, Bulbeck H, Lawrie TA, Hart MG, Watts C (2018) Intraoperative imaging technology to maximise extent of resection for glioma. The Cochrane database of systematic reviews. https://doi.org/10.1002/14651858.CD012788.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee JY, Thawani JP, Pierce J, Zeh R, Martinez-Lage M, Chanin M, Venegas O, Nims S, Learned K, Keating J, Singhal S (2016) Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery. Neurosurgery 79:856–871. https://doi.org/10.1227/NEU.0000000000001450

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu G, Wen X, Hong Y, Du H, Zhang X, Song J, Yin Y, Huang H, Shen G (2011) An anti-transferrin receptor antibody enhanced the growth inhibitory effects of chemotherapeutic drugs on human glioma cells. Int Immunopharmacol 11:1844–1849. https://doi.org/10.1016/j.intimp.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  19. Wang F, Bai HR, Wang J, Bai YZ, Dou CW (2011) Glioma growth inhibition in vitro and in vivo by single chain variable fragments of the transferrin receptor conjugated to survivin small interfering RNA. J Int Med Res 39:1701–1712. https://doi.org/10.1177/147323001103900512

    Article  PubMed  Google Scholar 

  20. Sun T, Wu H, Li Y, Huang Y, Yao L, Chen X, Han X, Zhou Y, Du Z (2017) Targeting transferrin receptor delivery of temozolomide for a potential glioma stem cell-mediated therapy. Oncotarget 8:74451–74465. https://doi.org/10.18632/oncotarget.20165

    Article  PubMed  PubMed Central  Google Scholar 

  21. On NH, Chen F, Hinton M, Miller DW (2011) Assessment of P-glycoprotein activity in the Blood-Brain Barrier (BBB) using Near Infrared Fluorescence (NIRF) imaging techniques. Pharm Res 28:2505–2515. https://doi.org/10.1007/s11095-011-0478-6

    Article  CAS  PubMed  Google Scholar 

  22. Meng Y, Zhang Z, Liu K, Ye L, Liang Y, Gu W (2018) Aminopeptidase N (CD13) targeted MR and NIRF dual-modal imaging of ovarian tumor xenograft. Mater Sci Eng C Mater Biol Appl 93:968–974. https://doi.org/10.1016/j.msec.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  23. Ma W, Li G, Wang J, Yang W, Zhang Y, Conti PS, Chen K (2014) In vivo NIRF imaging-guided delivery of a novel NGR-VEGI fusion protein for targeting tumor vasculature. Amino Acids 46:2721–2732. https://doi.org/10.1007/s00726-014-1828-6

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Wang ZJ, Li X, Ma XW, Wang SL, Kang F, Yang WD, Ma WH, Wang J (2019) Near-Infrared Fluorescent Peptides with High Tumor Selectivity: Novel Probes for Image-Guided Surgical Resection of Orthotopic Glioma. Mol Pharm 16:108–117. https://doi.org/10.1021/acs.molpharmaceut.8b00888

    Article  CAS  PubMed  Google Scholar 

  25. Kogan-Zviagin I, Shamay Y, Nissan A, Sella-Tavor O, Golan M, David A (2014) Intra-colonic administration of a polymer-bound NIRF probe for improved colorectal cancer detection during colonoscopy. J Control Release 192:182–191. https://doi.org/10.1016/j.jconrel.2014.06.058

    Article  CAS  PubMed  Google Scholar 

  26. Hernandez R, Sun H, England CG, Valdovinos HF, Ehlerding EB, Barnhart TE, Yang Y, Cai W (2016) CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody. Theranostics 6:1918–1933. https://doi.org/10.7150/thno.15568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hara T, Jaffer FA (2016) Intravascular NIRF Molecular Imaging Approaches in Coronary Artery Disease. Curr Cardiovasc Imaging Rep. https://doi.org/10.1007/s12410-016-9374-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J, Kann B, Dijk WJR, Thijssen VL, Griffioen AW, Storm G, Fayad ZA, Mulder WJM (2011) Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in Experimental Cancer. ACS Nano 5:4422–4433. https://doi.org/10.1021/nn103336a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ding H, Kothandaraman S, Gong L, Wright CL, Pan Q, Teknos T, Tweedle MF (2019) Novel Peptide NIRF Optical Surgical Navigation Agents for HNSCC. Molecules. https://doi.org/10.3390/molecules24173070

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen M, Perez RL, Du P, Bhattarai N, McDonough KC, Ravula S, Kumar R, Mathis JM, Warner IM (2019) Tumor-Targeting NIRF NanoGUMBOS with Cyclodextrin-Enhanced Chemo/Photothermal Antitumor Activities. ACS Appl Mater Interfaces 11:27548–27557. https://doi.org/10.1021/acsami.9b08047

    Article  CAS  PubMed  Google Scholar 

  31. Jin ZH, Razkin J, Josserand V, Boturyn D, Grichine A, Texier I, Favrot MC, Dumy P, Coll JL (2007) In vivo noninvasive optical imaging of receptor-mediated RGD internalization using self-quenched Cy5-labeled RAFT-c(-RGDfK-)(4). Mol Imaging 6:43–55

    Article  CAS  Google Scholar 

  32. Josan JS, Morse DL, Xu L, Trissal M, Baggett B, Davis P, Vagner J, Gillies RJ, Hruby VJ (2009) Solid-phase synthetic strategy and bioevaluation of a labeled delta-opioid receptor ligand Dmt-Tic-Lys for in vivo imaging. Org Lett 11:2479–2482. https://doi.org/10.1021/ol900200k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agnes RS, Broome AM, Wang J, Verma A, Lavik K, Basilion JP (2012) An optical probe for noninvasive molecular imaging of orthotopic brain tumors overexpressing epidermal growth factor receptor. Mol Cancer Ther 11:2202–2211. https://doi.org/10.1158/1535-7163.MCT-12-0211

    Article  CAS  PubMed  Google Scholar 

  34. Chopra A (2004) Cy5.5-Conjugated matrix metalloproteinase cleavable peptide nanoprobe. Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD)

  35. Ntziachristos V, Schellenberger EA, Ripoll J, Yessayan D, Graves E, Bogdanov A, Josephson L, Weissleder R (2004) Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci U S A 101:12294–12299. https://doi.org/10.1073/pnas.0401137101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu LP, Josan JS, Vagner J, Caplan MR, Hruby VJ, Mash EA, Lynch RM, Morse DL, Gillies RJ (2012) Heterobivalent ligands target cell-surface receptor combinations in vivo. Proc Natl Acad Sci U S A 109:21295–21300. https://doi.org/10.1073/pnas.1211762109

    Article  PubMed  PubMed Central  Google Scholar 

  37. La Rocca G, Sabatino G, Menna G, Altieri R, Ius T, Marchese E, Olivi A, Barresi V, Della Pepa GM (2020) 5-Aminolevulinic Acid False Positives in Cerebral Neuro-Oncology: Not All That Is Fluorescent Is Tumor. A Case-Based Update and Literature Review. World Neurosurg 137:187–193. https://doi.org/10.1016/j.wneu.2020.01.238

    Article  PubMed  Google Scholar 

  38. Yamamoto J, Kitagawa T, Miyaoka R, Suzuki K, Takamatsu S, Saito T, Nakano Y (2020) 5-Aminolevulinic Acid: Pitfalls of Fluorescence-guided Resection for Malignant Gliomas and Application for Malignant Glioma Therapy. Journal of UOEH 42:27–34. https://doi.org/10.7888/juoeh.42.27

    Article  PubMed  Google Scholar 

  39. Feng GK, Ye JC, Zhang WG, Mei Y, Zhou C, Xiao YT, Li XL, Fan W, Wang F, Zeng MS (2019) Integrin alpha6 targeted positron emission tomography imaging of hepatocellular carcinoma in mouse models. J Control Release 310:11–21. https://doi.org/10.1016/j.jconrel.2019.08.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Jia-Cong Ye and Yi-Tai Xiao for their technical support.

Funding

This study was supported by grants from the National Basic Research Program (973, 2015CB755505), the National Natural Science Foundation of China (NSFC) (81372685, 81872059, 81572479 and 81772677), Guangzhou Science Technology and Innovation Project (201508020125), the Science and Technology Planning Project (2016A020213004) and the Natural Science Foundation of Guangdong Province (NSFG) (2016A030313309).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Kai Feng or Zhong-Ping Chen.

Ethics declarations

Conflict of interest

We declare that we have no personal, financial, or institutional interest in any of the drugs, materials, or devices described in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, XR., Zhao, YY., Cai, HP. et al. Transferrin receptor 1 targeted optical imaging for identifying glioma margin in mouse models. J Neurooncol 148, 245–258 (2020). https://doi.org/10.1007/s11060-020-03527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03527-3

Keywords

Navigation