Skip to main content

Advertisement

Log in

Inhibition of protein phosphatase-2A with LB-100 enhances antitumor immunity against glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastoma (GBM) carries a dismal prognosis despite standard multimodal treatment with surgery, chemotherapy and radiation. Immune checkpoint inhibitors, such as PD1 blockade, for treatment of GBM failed to show clinical benefit. Rational combination strategies to overcome resistance of GBM to checkpoint monotherapy are needed to extend the promise of immunotherapy to GBM management. Emerging evidence suggests that protein phosphatase 2A (PP2A) plays a critical role in the signal transduction pathways of both adaptive and innate immune cells and that inhibition of PP2A could enhance cancer immunity. We investigated the use of a PP2A inhibitor, LB-100, to enhance antitumor efficacy of PD1 blockade in a syngeneic glioma model.

Methods

C57BL/6 mice were implanted with murine glioma cell line GL261-luc or GL261-WT and randomized into 4 treatment arms: (i) control, (ii) LB-100, (iii) PD1 blockade and (iv) combination. Survival was assessed and detailed profiling of tumor infiltrating leukocytes was performed.

Results

Dual PP2A and PD1 blockade significantly improved survival compared with monotherapy alone. Combination therapy resulted in complete regression of tumors in about 25% of mice. This effect was dependent on CD4 and CD8 T cells and cured mice established antigen-specific secondary protective immunity. Analysis of tumor lymphocytes demonstrated enhanced CD8 infiltration and effector function.

Conclusion

This is the first preclinical investigation of the effect of combining PP2A inhibition with PD1 blockade for GBM. This novel combination provided effective tumor immunotherapy and long-term survival in our animal GBM model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Li K, Lu D, Guo Y, Wang C, Liu X, Liu Y, Liu D (2018) Trends and patterns of incidence of diffuse glioma in adults in the United States, 1973–2014. Cancer Med 7:5281–5290

    PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    CAS  PubMed  Google Scholar 

  3. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fillet AC, Henriquez M, Dey M (2017) Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget 8:91779–91794

    Google Scholar 

  5. Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, Liu A, Sankey EW, Tam A, Xu H et al (2017) Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res 23:124–136

    CAS  PubMed  Google Scholar 

  6. Banks WA (2009) Characteristics of compounds that cross the blood-brain barrier. BMC Neurol 9:S3

    PubMed  PubMed Central  Google Scholar 

  7. Reardon DA, Gokhale PC, Klein SR, Ligon KL, Rodig SJ, Ramkissoon SH, Jones KL, Conway AS, Liao X, Zhou J et al (2016) Glioblastoma eradication following immune checkpoint blockade in an orthotopic immunocompetent model. Cancer Immunol Res 4:124–135

    CAS  PubMed  Google Scholar 

  8. Sun L, Pham TT, Cornell TT, McDonough KL, McHugh WM, Blatt NB, Dahmer MK, Shanley TP (2017) Myeloid-specific gene deletion of protein phosphatase 2A magnifies MyD88- and TRIF-dependent inflammation following endotoxin challenge. J Immunol 198:404–416

    CAS  PubMed  Google Scholar 

  9. Trotta R, Ciarlariello D, Dal Col J, Mao H, Chen L, Briercheck E, Yu J, Zhang J, Perrotti D, Caligiuri MA (2011) The PP2A inhibitor SET regulates granzyme B expression in human natural killer cells. Blood 117:2378–2384

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Trotta R, Ciarlariello D, Dal Col J, Allard J, Neviani P, Santhanam R, Mao H, Becknell B, Yu J, Ferketich AK et al (2007) The PP2A inhibitor SET regulates natural killer cell IFN-gamma production. J Exp Med 204:2397–2405

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou P, Shaffer DR, Alvarez Arias DA, Nakazaki Y, Pos W, Torres AJ, Cremasco V, Dougan SK, Cowley GS, Elpek K et al (2014) In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 506:52–57

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Taffs RE, Redegeld FA, Sitkovsky M (1991) V Modulation of cytolytic T lymphocyte functions by an inhibitor of serine/threonine phosphatase, okadaic acid. Enhancement of cytolytic T lymphocyte-mediated cytotoxicity. J Immunol 147:722–728

    CAS  PubMed  Google Scholar 

  13. Apostolidis SA, Rodríguez-Rodríguez N, Suárez-Fueyo A, Dioufa N, Ozcan E, Crispín JC, Tsokos MG, Tsokos GC (2016) Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol 17:556–564

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shanley TP, Vasi N, Denenberg A, Wong HR (2001) The serine/threonine phosphatase, PP2A: endogenous regulator of inflammatory cell signaling. J Immunol 166:966–972

    CAS  PubMed  Google Scholar 

  15. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ho WS, Wang H, Maggio D, Kovach JS, Zhang Q, Song Q, Marincola FM, Heiss JD, Gilbert MR, Lu R et al (2018) Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 9:1–15

    Google Scholar 

  17. Cui J, Wang H, Medina R, Zhang Q, Xu C, Indig IH, Zhou J, Song Q, Dmitriev P, Sun MY et al (2020) Inhibition of PP2A with LB-100 enhances efficacy of CAR-T cell therapy against glioblastoma. Cancers (Basel) 12:1–15

    Google Scholar 

  18. Chung V, Mansfield AS, Braiteh F, Richards D, Durivage H, Ungerleider RS, Johnson F, Kovach JS (2017) Safety, tolerability, and preliminary activity of LB-100, an inhibitor of protein phosphatase 2A, in patients with relapsed solid tumors: an open-label, dose escalation, first-in-human, Phase I trial. Clin Cancer Res 23:3277–3284

    CAS  PubMed  Google Scholar 

  19. Chang K-E, Wei B-R, Madigan JP, Hall MD, Simpson RM, Zhuang Z, Gottesman MM (2015) The protein phosphatase 2A inhibitor LB100 sensitizes ovarian carcinoma cells to cisplatin-mediated cytotoxicity. Mol Cancer Ther 14:90–100

    CAS  PubMed  Google Scholar 

  20. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    CAS  Google Scholar 

  21. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543

    CAS  PubMed  Google Scholar 

  22. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    CAS  PubMed  Google Scholar 

  23. Rose S, Misharin A, Perlman H (2012) A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry A 81A:343–350

    CAS  Google Scholar 

  24. Augier S, Ciucci T, Luci C, Carle GF, Blin-Wakkach C, Wakkach A (2010) Inflammatory blood monocytes contribute to tumor development and represent a privileged target to improve host immunosurveillance. J Immunol 185:7165–7173

    CAS  PubMed  Google Scholar 

  25. Wilcox RA, Wada DA, Ziesmer SC, Elsawa SF, Comfere NI, Dietz AB, Novak AJ, Witzig TE, Feldman AL, Pittelkow MR et al (2009) Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood 114:2936–2944

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I (2016) Dual faces of ifnγ in cancer progression: a role of pd-l1 induction in the determination of pro- and antitumor immunity. Clin Cancer Res 22:2329–2334

    CAS  PubMed  Google Scholar 

  27. Patel SP, Kurzrock R (2015) PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14:847–856

    CAS  PubMed  Google Scholar 

  28. Sanmamed MF, Chen L (2018) A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175:313–326

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mullard A (2018) Phosphatases start shedding their stigma of undruggability. Nat Rev Drug Discov 17:847–849

    CAS  PubMed  Google Scholar 

  30. Baskaran R, Velmurugan BK (2018) Protein phosphatase 2A as therapeutic targets in various disease models. Life Sci 210:40–46

    CAS  PubMed  Google Scholar 

  31. Ho WS, Feldman MJ, Maric D, Amable L, Hall MD, Feldman GM, Ray-Chaudhury A, Lizak MJ, Vera J-C, Robison RA et al (2016) PP2A inhibition with LB100 enhances cisplatin cytotoxicity and overcomes cisplatin resistance in medulloblastoma cells. Oncotarget 7:12447–12463

    PubMed  PubMed Central  Google Scholar 

  32. Ho WS, Sizdahkhani S, Hao S, Song H, Seldomridge A, Tandle A, Maric D, Kramp T, Lu R, Heiss JD et al (2018) LB-100, a novel Protein Phosphatase 2A (PP2A) inhibitor, sensitizes malignant meningioma cells to the therapeutic effects of radiation. Cancer Lett 415:217–226

    CAS  PubMed  Google Scholar 

  33. Hong CS, Ho W, Zhang C, Yang C, Elder JB, Zhuang Z (2015) LB100, a small molecule inhibitor of PP2A with potent chemo- and radio-sensitizing potential. Cancer Biol Ther 16:821–833

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Long L, Deng Y, Yao F, Guan D, Feng Y, Jiang H, Li X, Hu P, Lu X, Wang H et al (2014) Recruitment of phosphatase PP2A by RACK1 adaptor protein deactivates transcription factor IRF3 and limits type I interferon signaling. Immunity 40:515–529

    CAS  PubMed  Google Scholar 

  35. Sheu J-R, Chen Z-C, Hsu M-J, Wang S-H, Jung K-W, Wu W-F, Pan S-H, Teng R-D, Yang C-H, Hsieh C-Y (2018) CME-1, a novel polysaccharide, suppresses iNOS expression in lipopolysaccharide-stimulated macrophages through ceramide-initiated protein phosphatase 2A activation. J Cell Mol Med 22:999–1013

    CAS  PubMed  Google Scholar 

  36. Nduom EK, Yang C, Merrill MJ, Zhuang Z, Lonser RR (2013) Characterization of the blood-brain barrier of metastatic and primary malignant neoplasms. J Neurosurg 119:427–433

    PubMed  PubMed Central  Google Scholar 

  37. Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, Giannini C, Burns TC, Kizilbash SH, Laramy JK et al (2018) Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol 20:184–191

    CAS  PubMed  Google Scholar 

  38. Borcoman E, Kanjanapan Y, Champiat S, Kato S, Servois V, Kurzrock R, Goel S, Bedard P, Le Tourneau C (2019) Novel patterns of response under immunotherapy. Ann Oncol Off J Eur Soc Med Oncol 30:385–396

    CAS  Google Scholar 

  39. Gehringer MM (2004) Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Lett 557:1–8

    CAS  PubMed  Google Scholar 

  40. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    CAS  PubMed  Google Scholar 

  41. deLeeuw RJ, Kost SE, Kakal JA, Nelson BH (2012) The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res 18:3022–3029

    CAS  PubMed  Google Scholar 

  42. Thomas AA, Fisher JL, Rahme GJ, Hampton TH, Baron U, Olek S, Schwachula T, Rhodes CH, Gui J, Tafe LJ et al (2015) Regulatory T cells are not a strong predictor of survival for patients with glioblastoma. Neuro Oncol 17:801–809

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10

    PubMed  Google Scholar 

  45. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74

    CAS  Google Scholar 

  46. Wei J, Chen P, Gupta P, Ott M, Zamler D, Kassab C, Bhat KP, Curran MA, de Groot JF, Heimberger AB (2020) Immune biology of glioma-associated macrophages and microglia: functional and therapeutic implications. Neuro Oncol 22:180–194

    PubMed  Google Scholar 

Download references

Funding

The research was supported by the Intramural Research Program of the NINDS and NCI of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design—WH, RL, ZZ. Development of methodology—WH, RL, ZZ. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.)—RB, DM, WH, SW, HW, JC. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis)—RB, DM, WH, RL, ZZ, JH, MG. Writing, review, and/or revision of the manuscript—WH, RB, ZZ, JH, MG, JK. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases)—WH, DM, ZZ, JH.

Corresponding authors

Correspondence to Winson S. Ho, Rongze O. Lu or Zhengping Zhuang.

Ethics declarations

Conflict of interest

WH is a board member and has stock options for Lixte Biotechnology Holdings Inc. JK is a board member and own stocks for Lixte Biotechnology Holdings Inc. WH, HW, RL, JK, ZZ have pending patents related to this work. No potential conflicts of interest were disclosed by the other authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1067 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggio, D., Ho, W.S., Breese, R. et al. Inhibition of protein phosphatase-2A with LB-100 enhances antitumor immunity against glioblastoma. J Neurooncol 148, 231–244 (2020). https://doi.org/10.1007/s11060-020-03517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03517-5

Keywords

Navigation