Skip to main content

Advertisement

Log in

GD2 targeting by dinutuximab beta is a promising immunotherapeutic approach against malignant glioma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Disialoganglioside GD2 is expressed by glioblastoma multiforme (GBM) cells representing a promising target for anti-GD2 immunotherapeutic approaches. The aim of the present study was to investigate anti-tumor efficacy of the chimeric anti-GD2 antibody (Ab) dinutuximab beta against GBM.

Methods

Expression levels of GD2 and complement regulatory proteins (CRP; CD46, CD55 and CD59) on well-known and newly established primary tumor originated GBM cell lines were analyzed by flow cytometry. Ab-dependent cellular (ADCC) and complement-dependent cytotoxicity (CDC) mediated by dinutuximab beta against GBM cells were determined by a non-radioactive calcein-AM-based assay.

Results

Analysis of primary GBM cells revealed a heterogeneous GD2 expression that varied between the cell lines analyzed with higher expression levels in the tumor surface compared to the core originated cells. Both GD2-positive and -negative tumor cells were detected in every cell line analyzed. In contrast to CDC, ADCC mediated by dinutuximab beta was observed against the majority of GBM cells. Importantly, CDC-resistant cells showed high expression of the CRP CD46, CD55 and CD59.

Conclusion

Our present data show anti-tumor effects mediated by dinutuximab beta against GBM cells providing a rationale for a GD2-directed immunotherapy against GBM. Due to high CRP expression, a combining of GD2-targeting with CRP blockade might be a further treatment option for GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arbit E, Cheung NK, Yeh SD, Daghighian F, Zhang JJ, Cordon-Cardo C, Pentlow K, Canete A, Finn R, Larson SM (1995) Quantitative studies of monoclonal antibody targeting to disialoganglioside GD2 in human brain tumors. Eur J Nucl Med 22:419–426. https://doi.org/10.1007/bf00839056

    Article  CAS  PubMed  Google Scholar 

  2. Brat DJ, Van Meir EG (2004) Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Investig 84:397–405. https://doi.org/10.1038/labinvest.3700070

    Article  CAS  PubMed  Google Scholar 

  3. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6:443–446. https://doi.org/10.1038/74704

    Article  CAS  PubMed  Google Scholar 

  4. De Felice F, Pranno N, Marampon F, Musio D, Salducci M, Polimeni A, Tombolini V (2019) Immune check-point in glioblastoma multiforme. Crit Rev Oncol Hematol 138:60–69. https://doi.org/10.1016/j.critrevonc.2019.03.019

    Article  PubMed  Google Scholar 

  5. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E, Botto M, Introna M, Golay J (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587. https://doi.org/10.4049/jimmunol.171.3.1581

    Article  PubMed  Google Scholar 

  6. Fecci PE, Sampson JH (2019) The current state of immunotherapy for gliomas: an eye toward the future. J Neurosurg 131:657–666. https://doi.org/10.3171/2019.5.JNS181762

    Article  PubMed  Google Scholar 

  7. Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M (2003) Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 40:109–123. https://doi.org/10.1016/s0161-5890(03)00112-3

    Article  CAS  PubMed  Google Scholar 

  8. Fleurence J, Cochonneau D, Fougeray S, Oliver L, Geraldo F, Terme M, Dorvillius M, Loussouarn D, Vallette F, Paris F, Birkle S (2016) Targeting and killing glioblastoma with monoclonal antibody to O-acetyl GD2 ganglioside. Oncotarget 7:41172–41185. https://doi.org/10.18632/oncotarget.9226

    Article  PubMed  PubMed Central  Google Scholar 

  9. Golinelli G, Grisendi G, Prapa M, Bestagno M, Spano C, Rossignoli F, Bambi F, Sardi I, Cellini M, Horwitz EM, Feletti A, Pavesi G, Dominici M (2018) Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther. https://doi.org/10.1038/s41417-018-0062-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Iwasawa T, Zhang P, Ohkawa Y, Momota H, Wakabayashi T, Ohmi Y, Bhuiyan RH, Furukawa K, Furukawa K (2018) Enhancement of malignant properties of human glioma cells by ganglioside GD3/GD2. Int J Oncol 52:1255–1266. https://doi.org/10.3892/ijo.2018.4266

    Article  CAS  PubMed  Google Scholar 

  11. Ladenstein R, Potschger U, Valteau-Couanet D, Luksch R, Castel V, Yaniv I, Laureys G, Brock P, Michon JM, Owens C, Trahair T, Chan GCF, Ruud E, Schroeder H, Beck Popovic M, Schreier G, Loibner H, Ambros P, Holmes K, Castellani MR, Gaze MN, Garaventa A, Pearson ADJ, Lode HN (2018) Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol 19:1617–1629. https://doi.org/10.1016/S1470-2045(18)30578-3

    Article  CAS  PubMed  Google Scholar 

  12. Ladenstein RL, Poetschger U, Couanet DV, Gray J, Luksch R, Castel V, Ash S, Laureys G, Owens C, Trahair T, Chan GCF, Ruud E, Schroeder H, Popovic MB, Loibner H, Schreier G, Ambros PF, Sarnacki S, Boterberg T, Lode HN (2018) Immunotherapy with anti-GD2 antibody ch14.18/CHO±IL2 within the HR-NBL1/SIOPEN trial to improve outcome of high-risk neuroblastoma patients compared to historical controls. J Clin Oncol 36:10539–10539. https://doi.org/10.1200/JCO.2018.36.15_suppl.10539

    Article  Google Scholar 

  13. Maenpaa A, Junnikkala S, Hakulinen J, Timonen T, Meri S (1996) Expression of complement membrane regulators membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59) in human malignant gliomas. Am J Pathol 148:1139–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mennel HD, Bosslet K, Geissel H, Bauer BL (2000) Immunohistochemically visualized localisation of gangliosides Glac2 (GD3) and Gtri2 (GD2) in cells of human intracranial tumors. Exp Toxicol Pathol 52:277–285. https://doi.org/10.1016/S0940-2993(00)80046-9

    Article  CAS  PubMed  Google Scholar 

  15. Mount CW, Majzner RG, Sundaresh S, Arnold EP, Kadapakkam M, Haile S, Labanieh L, Hulleman E, Woo PJ, Rietberg SP, Vogel H, Monje M, Mackall CL (2018) Potent antitumor efficacy of anti-GD2 CAR T cells in H3–K27M(+) diffuse midline gliomas. Nat Med 24:572–579. https://doi.org/10.1038/s41591-018-0006-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Platten M, Reardon DA (2018) Concepts for Immunotherapies in Gliomas. Semin Neurol 38:62–72. https://doi.org/10.1055/s-0037-1620274

    Article  PubMed  Google Scholar 

  17. Prokazova NV, Kocharov SL, Shaposhnikova GI, Zvezdina ND, Bergelson LD (1984) Changes of glycolipids dependent on cell density of Ehrlich ascites carcinoma cells. Eur J Biochem 141:527–529. https://doi.org/10.1111/j.1432-1033.1984.tb08224.x

    Article  CAS  PubMed  Google Scholar 

  18. Rehman AA, Elmore KB, Mattei TA (2015) The effects of alternating electric fields in glioblastoma: current evidence on therapeutic mechanisms and clinical outcomes. Neurosurg Focus 38:E14. https://doi.org/10.3171/2015.1.FOCUS14742

    Article  PubMed  Google Scholar 

  19. Sayegh ET, Oh T, Fakurnejad S, Bloch O, Parsa AT (2014) Vaccine therapies for patients with glioblastoma. J Neurooncol 119:531–546. https://doi.org/10.1007/s11060-014-1502-6

    Article  CAS  PubMed  Google Scholar 

  20. Schengrund CL, Repman MA (1982) Density-dependent changes in gangliosides and sialidase activity of murine neuroblastoma cells. J Neurochem 39:940–947. https://doi.org/10.1111/j.1471-4159.1982.tb11480.x

    Article  CAS  PubMed  Google Scholar 

  21. Siebert N, Seidel D, Eger C, Juttner M, Lode HN (2014) Functional bioassays for immune monitoring of high-risk neuroblastoma patients treated with ch14.18/CHO anti-GD2 antibody. PLoS ONE 9:e107692. https://doi.org/10.1371/journal.pone.0107692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki M, Cheung NK (2015) Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin Ther Targets 19:349–362. https://doi.org/10.1517/14728222.2014.986459

    Article  CAS  PubMed  Google Scholar 

  24. Weller M, Le Rhun E, Preusser M, Tonn JC, Roth P (2019) How we treat glioblastoma. ESMO Open 4:e000520. https://doi.org/10.1136/esmoopen-2019-000520

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. https://doi.org/10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  26. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM, Children's Oncology G (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363:1324–1334. https://doi.org/10.1056/NEJMoa0911123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Maria Asmus, Manuela Brueser and Theodor Koepp (University Medicine Greifswald, Pediatric Hematology and Oncology, Greifswald, Germany) for excellent technical assistance. We thank Marc Matthes for his help in preparing the illustrations.

Funding

Financial support was provided by the University Medicine Greifswald, Germany, the Gerhard-Domagk scholarship program, Germany, the Lieselotte-Beutel-Stiftung, Germany, the Forschungsverbund Molekulare Medizin Greifswald, Germany and Apeiron Biologics, Vienna, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Marx.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marx, S., Wilken, F., Wagner, I. et al. GD2 targeting by dinutuximab beta is a promising immunotherapeutic approach against malignant glioma. J Neurooncol 147, 577–585 (2020). https://doi.org/10.1007/s11060-020-03470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03470-3

Keywords

Navigation