Skip to main content

Advertisement

Log in

T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma remains as the most common and aggressive primary adult brain tumor to date. Within the last decade, cancer immunotherapy surfaced as a broadly successful therapeutic approach for a variety of cancers. However, due to the neuroanatomical and immunosuppressive nature of malignant gliomas, conventional chemotherapy and radiotherapy treatments garner limited efficacy in patients with these tumors. The intricate structure of the blood brain barrier restricts immune accessibility into the tumor microenvironment, and malignant gliomas can activate various adaptive responses to subvert anticancer immune responses and reinstate an immunosuppressive milieu. Yet, evidence of lymphocyte infiltration within the brain and recent advancements made in cell engineering technologies implicate the vast potential in the future of neuro-oncological immunotherapy. Previous immunotherapy platforms have paved way to improved modalities, which includes but is not limited to personalized vaccines and chimeric antigen receptor T-cell therapy. This review will cover the various neuroanatomical and immunosuppressive features of central nervous system tumors and highlight the innovations made in T-cell based therapies to overcome the challenges presented by the glioblastoma microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wolchok JD, Chiarion-Sileni V, Gonzalez R et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377:1345–1356. https://doi.org/10.1056/NEJMoa1709684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Motzer RJ, Tannir NM, McDermott DF et al (2018) Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378:1277–1290. https://doi.org/10.1056/NEJMoa1712126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517. https://doi.org/10.1056/NEJMoa1407222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maude SL, Laetsch TW, Buechner J et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378:439–448. https://doi.org/10.1056/NEJMoa1709866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Medawar PB (1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29(1):58–69

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Andersson P-B, Perry VH, Gordon S (1992) The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 48:169–186. https://doi.org/10.1016/0306-4522(92)90347-5

    Article  CAS  PubMed  Google Scholar 

  7. Stevenson PG, Hawke S, Sloan DJ, Bangham CRM (1997) The immunogenicity of intracerebral virus infection depends on anatomical site. J Virol 71:7

    Google Scholar 

  8. Russo MV, McGavern DB (2015) Immune surveillance of the CNS following infection and injury. Trends Immunol 36:637–650. https://doi.org/10.1016/j.it.2015.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mrdjen D, Pavlovic A, Hartmann FJ et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48:380–395.e6. https://doi.org/10.1016/j.immuni.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  10. Thion MS, Low D, Silvin A et al (2018) Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172:500–516.e16. https://doi.org/10.1016/j.cell.2017.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chuntova P, Downey KM, Hegde B et al (2019) Genetically engineered T-cells for malignant glioma: overcoming the barriers to effective immunotherapy. Front Immunol 9:3062. https://doi.org/10.3389/fimmu.2018.03062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Engelhardt B (2012) Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol 33:11

    Article  Google Scholar 

  13. Baron JL (1993) Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 177:57–68. https://doi.org/10.1084/jem.177.1.57

    Article  CAS  PubMed  Google Scholar 

  14. Galea I, Bernardes-Silva M, Forse PA et al (2007) An antigen-specific pathway for CD8 T cells across the blood-brain barrier. J Exp Med 204:2023–2030. https://doi.org/10.1084/jem.20070064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran EH, Hoekstra K, van Rooijen N et al (1998) Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 161:3767

    CAS  PubMed  Google Scholar 

  16. Dohgu S, Takata F, Yamauchi A et al (2005) Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production. Brain Res 1038:208–215. https://doi.org/10.1016/j.brainres.2005.01.027

    Article  CAS  PubMed  Google Scholar 

  17. Wyss-Coray T, Borrow P, Brooker MJ, Mucke L (1997) Astroglial overproduction of TGF-b 1 enhances inflammatory central nervous system disease in transgenic mice. J Immunol 77:45–50

    CAS  Google Scholar 

  18. Roszman T, Elliott L, Brooks W (1991) Modulation of T-cell function by gliomas. Immunol Today 12:370–374. https://doi.org/10.1016/0167-5699(91)90068-5

    Article  CAS  PubMed  Google Scholar 

  19. Bloch O, Crane CA, Kaur R et al (2013) Gliomas promote immunosuppression through induction of B7–H1 expression in tumor-associated macrophages. Clin Cancer Res 19:3165–3175. https://doi.org/10.1158/1078-0432.CCR-12-3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chae M, Peterson TE, Balgeman A et al (2015) Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model. Neuro-Oncology 17:978–991. https://doi.org/10.1093/neuonc/nou343

    Article  CAS  PubMed  Google Scholar 

  21. Brown CE, Alizadeh D, Starr R et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569. https://doi.org/10.1056/NEJMoa1610497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327. https://doi.org/10.1038/nature13387

    Article  CAS  PubMed  Google Scholar 

  23. Okada H, Butterfield LH, Hamilton RL et al (2015) Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res 21:286–294. https://doi.org/10.1158/1078-0432.CCR-14-1790

    Article  CAS  PubMed  Google Scholar 

  24. Pollack IF, Jakacki RI, Butterfield LH et al (2016) Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro Oncol 18:1157–1168. https://doi.org/10.1093/neuonc/now026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Platten M, Reardon D (2018) Concepts for immunotherapies in gliomas. Semin Neurol 38:062–072. https://doi.org/10.1055/s-0037-1620274

    Article  Google Scholar 

  26. Jackson CM, Kochel CM, Nirschl CJ et al (2016) Systemic tolerance mediated by melanoma brain tumors is reversible by radiotherapy and vaccination. Clin Cancer Res 22:1161–1172. https://doi.org/10.1158/1078-0432.CCR-15-1516

    Article  CAS  PubMed  Google Scholar 

  27. Heimberger AB, Sun W, Hussain SF et al (2008) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro oncology 10(1):98–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang SS, Bandopadhayay P, Jenkins MR (2019) Towards immunotherapy for pediatric brain tumors. Trends Immunol 40:748–761. https://doi.org/10.1016/j.it.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  29. Quail DF, Bowman RL, Akkari L et al (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science. https://doi.org/10.1126/science.aad3018

    Article  PubMed  PubMed Central  Google Scholar 

  30. Peranzoni E, Lemoine J, Vimeux L et al (2018) Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti–PD-1 treatment. Proc Natl Acad Sci USA 115(17):E4041–E4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takenaka MC, Gabriely G, Rothhammer V et al (2019) Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci 22:729–740. https://doi.org/10.1038/s41593-019-0370-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Opitz CA, Litzenburger UM, Sahm F et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203. https://doi.org/10.1038/nature10491

    Article  CAS  PubMed  Google Scholar 

  33. Wainwright DA, Balyasnikova IV, Chang AL et al (2012) IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18:6110–6121. https://doi.org/10.1158/1078-0432.CCR-12-2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beatty GL, O’Dwyer PJ, Clark J et al (2017) First-in-human phase 1 study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. Clin Cancer Res 23(13):3269–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ichimura K (2012) Molecular pathogenesis of IDH mutations in gliomas. Brain Tumor Pathol 29:131–139. https://doi.org/10.1007/s10014-012-0090-4

    Article  CAS  PubMed  Google Scholar 

  36. Kohanbash G, Carrera DA, Shrivastav S et al (2017) Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J Clin Investig 127:1425–1437. https://doi.org/10.1172/JCI90644

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berghoff AS, Kiesel B, Widhalm G et al (2017) Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro-Oncology 19:1460–1468. https://doi.org/10.1093/neuonc/nox054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wei J, Barr J, Kong L-Y et al (2010) Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 9(1):67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hussain SF, Kong L-Y, Jordan J et al (2007) A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 67:9630–9636

    Article  CAS  PubMed  Google Scholar 

  40. Facoetti A, Nano R, Zelini P et al (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11:8304–8311

    Article  CAS  PubMed  Google Scholar 

  41. Yeung JT, Hamilton RL, Ohnishi K et al (2013) LOH in the HLA class I region at 6p21 is associated with shorter survival in newly diagnosed adult glioblastoma. Clin Cancer Res 19(7):1816–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barber L, Howarth M, Bowness P, Elliott T (2001) The quantity of naturally processed peptides stably bound by HLA-A*0201 is significantly reduced in the absence of tapasin. Tissue Antigens 58:363–368. https://doi.org/10.1034/j.1399-0039.2001.580604.x

    Article  CAS  PubMed  Google Scholar 

  43. Thuring C (2015) HLA class I is most tightly linked to levels of tapasin compared with other antigen-processing proteins in glioblastoma. Br J Cancer 113(6):952–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chongsathidkiet P, Jackson C, Koyama S et al (2018) Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 24:1459–1468. https://doi.org/10.1038/s41591-018-0135-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31:326–341. https://doi.org/10.1016/j.ccell.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen Z, Feng X, Herting CJ et al (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77:2266–2278. https://doi.org/10.1158/0008-5472.CAN-16-2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18:225–242. https://doi.org/10.1038/nri.2017.125

    Article  CAS  PubMed  Google Scholar 

  48. Massara M, Persico P, Bonavita O et al (2017) Neutrophils in gliomas. Front Immunol 8:1349. https://doi.org/10.3389/fimmu.2017.01349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nitta T, Sato K, Allegretta M et al (1992) Expression of granulocyte colony stimulating factor and granulocyte-macrophage colony stimulating factor genes in human astrocytoma cell lines and in glioma specimens. Brain Res 571:19–25. https://doi.org/10.1016/0006-8993(92)90505-4

    Article  CAS  PubMed  Google Scholar 

  50. Wiencke JK, Koestler DC, Salas LA et al (2017) Immunomethylomic approach to explore the blood neutrophil lymphocyte ratio (NLR) in glioma survival. Clin Epigenet 9:10. https://doi.org/10.1186/s13148-017-0316-8

    Article  CAS  Google Scholar 

  51. Liang J, Piao Y, Holmes L et al (2014) Neutrophils promote the malignant glioma phenotype through S100A4. Clin Cancer Res 20:187–198. https://doi.org/10.1158/1078-0432.CCR-13-1279

    Article  CAS  PubMed  Google Scholar 

  52. Achyut BR, Shankar A, Iskander ASM et al (2015) Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Cancer Lett 369:416–426. https://doi.org/10.1016/j.canlet.2015.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Broz ML, Binnewies M, Boldajipour B et al (2014) Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26:638–652. https://doi.org/10.1016/j.ccell.2014.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eagles M, Nassiri F, Badhiwala J et al (2018) Dendritic cell vaccines for high-grade gliomas. TCRM 14:1299–1313. https://doi.org/10.2147/TCRM.S135865

    Article  CAS  Google Scholar 

  55. Alban TJ, Alvarado AG, Sorensen MD et al (2018) Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insight 3:e122264. https://doi.org/10.1172/jci.insight.122264

    Article  PubMed Central  Google Scholar 

  56. Kohanbash G, McKaveney K, Sakaki M et al (2013) GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor. Can Res 73:6413–6423. https://doi.org/10.1158/0008-5472.CAN-12-4124

    Article  CAS  Google Scholar 

  57. Fujita M, Kohanbash G, Fellows-Mayle W et al (2011) COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Can Res 71:2664–2674. https://doi.org/10.1158/0008-5472.CAN-10-3055

    Article  CAS  Google Scholar 

  58. Ohkuri T, Ghosh A, Kosaka A et al (2014) STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol Res 2:1199–1208. https://doi.org/10.1158/2326-6066.CIR-14-0099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arbour KC, Mezquita L, Long N et al (2018) Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. JCO 36:2872–2878. https://doi.org/10.1200/JCO.2018.79.0006

    Article  CAS  Google Scholar 

  60. Ajlan A, Thomas P, Albakr A et al (2017) Optimizing bevacizumab dosing in glioblastoma: less is more. J Neurooncol 135:99–105. https://doi.org/10.1007/s11060-017-2553-2

    Article  CAS  PubMed  Google Scholar 

  61. Reardon DA, Gokhale PC, Klein SR et al (2016) Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 4:124–135. https://doi.org/10.1158/2326-6066.CIR-15-0151

    Article  CAS  PubMed  Google Scholar 

  62. Coley WB (1910) The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med 3:1–48

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hodges TR, Ott M, Xiu J et al (2017) Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro-Oncology 19:1047–1057. https://doi.org/10.1093/neuonc/nox026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weller M, Kaulich K, Hentschel B et al (2014) Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy: EGFRvIII mutation and prognosis of glioblastoma. Int J Cancer 134:2437–2447. https://doi.org/10.1002/ijc.28576

    Article  CAS  PubMed  Google Scholar 

  65. Heimberger AB, Crotty LE, Friedman AH et al (2002) Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery 50:9

    Google Scholar 

  66. Schuster J, Lai RK, Recht LD et al (2015) A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-Oncology 17:854–861. https://doi.org/10.1093/neuonc/nou348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weller M, Butowski N, Tran DD et al (2017) Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18:1373–1385. https://doi.org/10.1016/S1470-2045(17)30517-X

    Article  CAS  PubMed  Google Scholar 

  68. van den Bent MJ, Gao Y, Kerkhof M et al (2015) Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. Neuro-Oncology 17:935–941. https://doi.org/10.1093/neuonc/nov013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Felsberg J, Hentschel B, Kaulich K et al (2017) Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res 23:6846–6855. https://doi.org/10.1158/1078-0432.CCR-17-0890

    Article  CAS  PubMed  Google Scholar 

  70. Reardon DA, Schuster J, Tran DD et al (2015) ReACT: overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. JCO 33:2009–2009. https://doi.org/10.1200/jco.2015.33.15_suppl.2009

    Article  Google Scholar 

  71. Khuong-Quang D-A, Buczkowicz P, Rakopoulos P et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447. https://doi.org/10.1007/s00401-012-0998-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chheda ZS, Kohanbash G, Okada K et al (2018) Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med 215:141–157. https://doi.org/10.1084/jem.20171046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Keskin DB, Anandappa AJ, Sun J et al (2019) Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565:234–239. https://doi.org/10.1038/s41586-018-0792-9

    Article  CAS  PubMed  Google Scholar 

  74. Hilf N, Kuttruff-Coqui S, Frenzel K et al (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565:240–245. https://doi.org/10.1038/s41586-018-0810-y

    Article  CAS  PubMed  Google Scholar 

  75. Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur J Biochem 219:11–23. https://doi.org/10.1111/j.1432-1033.1994.tb19910.x

    Article  CAS  PubMed  Google Scholar 

  76. Blachere NE, Li Z, Chandawarkar RY et al (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1322. https://doi.org/10.1084/jem.186.8.1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shevtsov M, Multhoff G (2016) Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol. https://doi.org/10.3389/fimmu.2016.00171

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hermisson M, Strik H, Rieger J et al (2000) Expression and functional activity of heat shock proteins in human glioblastoma multiforme. Neurology 54:1357. https://doi.org/10.1212/WNL.54.6.1357

    Article  CAS  PubMed  Google Scholar 

  79. Graner MW, Cumming RI, Bigner DD (2007) The heat shock response and chaperones/heat shock proteins in brain tumors: surface expression, release, and possible immune consequences. J Neurosci 27:11214–11227. https://doi.org/10.1523/JNEUROSCI.3588-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Beaman GM, Dennison SR, Chatfield LK, Phoenix DA (2014) Reliability of HSP70 (HSPA) expression as a prognostic marker in glioma. Mol Cell Biochem 393:301–307. https://doi.org/10.1007/s11010-014-2074-7

    Article  CAS  PubMed  Google Scholar 

  81. Graner MW, Bigner DD (2005) Chaperone proteins and brain tumors: potential targets and possibletherapeutics. Neuro-Oncology 7:260–278. https://doi.org/10.1215/S1152851704001188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shevtsov M, Kim A, Samochernych A et al (2014) Pilot study of intratumoral injection of recombinant heat shock protein 70 in the treatment of malignant brain tumors in children. OTT. https://doi.org/10.2147/OTT.S62764

    Article  Google Scholar 

  83. Shevtsov MA, Komarova EY, Meshalkina DA et al (2014) Exogenously delivered heat shock protein 70 displaces its endogenous analogue and sensitizes cancer cells to lymphocytes-mediated cytotoxicity. Oncotarget. https://doi.org/10.18632/oncotarget.1820

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shevtsov MA, Nikolaev BP, Yakovleva LY et al (2015) 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. J Control Release 220:329–340. https://doi.org/10.1016/j.jconrel.2015.10.051

    Article  CAS  PubMed  Google Scholar 

  85. Crane CA, Han SJ, Ahn B et al (2013) Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res 19:205–214. https://doi.org/10.1158/1078-0432.CCR-11-3358

    Article  CAS  PubMed  Google Scholar 

  86. Bloch O, Crane CA, Fuks Y et al (2014) Heat-shock protein peptide complex–96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro-Oncology 16:274–279. https://doi.org/10.1093/neuonc/not203

    Article  CAS  PubMed  Google Scholar 

  87. Ulmer JB, Mason PW, Geall A, Mandl CW (2012) RNA-based vaccines. Vaccine 30:4414–4418. https://doi.org/10.1016/j.vaccine.2012.04.060

    Article  CAS  PubMed  Google Scholar 

  88. Karikó K, Muramatsu H, Welsh FA et al (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16:1833–1840. https://doi.org/10.1038/mt.2008.200

    Article  CAS  PubMed  Google Scholar 

  89. Thess A, Grund S, Mui BL et al (2015) Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther 23:1456–1464. https://doi.org/10.1038/mt.2015.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 17:261–279. https://doi.org/10.1038/nrd.2017.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Conry RM, LoBuglio AF, Wright M et al (1995) Characterization of a messenger RNA polynucleotide vaccine vector’. Cancer Res 55(7):1397–1400

    CAS  PubMed  Google Scholar 

  92. Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184(2):465–472

    Article  CAS  PubMed  Google Scholar 

  93. Rahman M, Dastmalchi F, Karachi A, Mitchell D (2019) The role of CMV in glioblastoma and implications for immunotherapeutic strategies. OncoImmunology 8:e1514921. https://doi.org/10.1080/2162402X.2018.1514921

    Article  PubMed  Google Scholar 

  94. Zapatka M, Borozan I, Brewer DS, et al (2018) The landscape of viral associations in human cancers. Cancer Biol

  95. Scheel B, Aulwurm S, Probst J et al (2006) Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol 36:2807–2816. https://doi.org/10.1002/eji.200635910

    Article  CAS  PubMed  Google Scholar 

  96. Reinhard K, Rengstl B, Oehm P et al (2020) An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367:446–453. https://doi.org/10.1126/science.aay5967

    Article  CAS  PubMed  Google Scholar 

  97. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68. https://doi.org/10.1126/science.aaa4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Balch CM (1990) Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg 125:200. https://doi.org/10.1001/archsurg.1990.01410140078012

    Article  CAS  PubMed  Google Scholar 

  99. Saris SC, Spiess P, Lieberman DM et al (1992) Treatment of murine primary brain tumors with systemic interleukin-2 and tumor-infiltrating lymphocytes. J Neurosurg 76:513–519. https://doi.org/10.3171/jns.1992.76.3.0513

    Article  CAS  PubMed  Google Scholar 

  100. Quattrocchi KB, Miller CH, Cush S et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neuro-oncol 45(2):141–157

    Article  CAS  Google Scholar 

  101. Glitza IC, Haymaker C, Bernatchez C et al (2015) Intrathecal administration of tumor-infiltrating lymphocytes is well tolerated in a patient with leptomeningeal disease from metastatic melanoma: a case report. Cancer Immunol Res 3:1201–1206. https://doi.org/10.1158/2326-6066.CIR-15-0071

    Article  PubMed  PubMed Central  Google Scholar 

  102. Plautz GE, Barnett GH, Miller DW et al (1998) Systemic T cell adoptive immunotherapy of malignant gliomas. J Neurosurg 89:42–51. https://doi.org/10.3171/jns.1998.89.1.0042

    Article  CAS  PubMed  Google Scholar 

  103. Plautz GE, Miller DW, Barnett GH et al (2000) T cell adoptive immunotherapy of newly diagnosed gliomas. Clin Cancer Res 6(6):2209–2218

    CAS  PubMed  Google Scholar 

  104. Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:5

    Google Scholar 

  105. Johnson LA, Morgan RA, Dudley ME et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546. https://doi.org/10.1182/blood-2009-03-211714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morgan RA, Chinnasamy N, Abate-Daga D et al (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunotherapy 36:133–151. https://doi.org/10.1097/CJI.0b013e3182829903

    Article  CAS  Google Scholar 

  107. Cameron BJ, Gerry AB, Dukes J et al (2013) Identification of a titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3006034

    Article  PubMed  PubMed Central  Google Scholar 

  108. Parkhurst MR, Yang JC, Langan RC et al (2011) T Cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19:620–626. https://doi.org/10.1038/mt.2010.272

    Article  CAS  PubMed  Google Scholar 

  109. Fry TJ, Stetler-Stevenson M, Shah NN et al (2015) Clinical activity and persistence of anti-CD22 chimeric antigen receptor in children and young adults with relapsed/refractory acute lymphoblastic leukemia (ALL). Blood 126:1324–1324. https://doi.org/10.1182/blood.V126.23.1324.1324

    Article  Google Scholar 

  110. Ali SA, Shi V, Maric I et al (2016) T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128:1688–1700. https://doi.org/10.1182/blood-2016-04-711903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Morgan RA, Yang JC, Kitano M et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851. https://doi.org/10.1038/mt.2010.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lamers CH, Sleijfer S, van Steenbergen S et al (2013) Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21:904–912. https://doi.org/10.1038/mt.2013.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thistlethwaite FC, Gilham DE, Guest RD et al (2017) The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother 66:1425–1436. https://doi.org/10.1007/s00262-017-2034-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wikstrand CJ, Hale LP, Batra SK et al (1995) Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 55(14):3140–3148

    CAS  PubMed  Google Scholar 

  115. Gupta P, Han S-Y, Holgado-Madruga M et al (2010) Development of an EGFRvIII specific recombinant antibody. BMC Biotechnol 10:72. https://doi.org/10.1186/1472-6750-10-72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ohno M, Ohkuri T, Kosaka A et al (2013) Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. J Immunother Cancer 1:21. https://doi.org/10.1186/2051-1426-1-21

    Article  PubMed  PubMed Central  Google Scholar 

  117. Johnson LA, Scholler J, Ohkuri T et al (2015) Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaa4963

    Article  PubMed  PubMed Central  Google Scholar 

  118. O’Rourke DM, Nasrallah MP, Desai A et al (2017) A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 9:eaaa0984. https://doi.org/10.1126/scitranslmed.aaa0984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hegde M, Corder A, Chow KK et al (2013) Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther 21:2087–2101. https://doi.org/10.1038/mt.2013.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bielamowicz K, Fousek K, Byrd TT et al (2018) Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology 20:506–518. https://doi.org/10.1093/neuonc/nox182

    Article  CAS  PubMed  Google Scholar 

  121. Kloss CC, Condomines M, Cartellieri M et al (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31:71–75. https://doi.org/10.1038/nbt.2459

    Article  CAS  PubMed  Google Scholar 

  122. Grada Z, Hegde M, Byrd T et al (2013) TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Therapy Nucleic Acids 2:e105. https://doi.org/10.1038/mtna.2013.32

    Article  CAS  PubMed  Google Scholar 

  123. Roybal KT, Rupp LJ, Morsut L et al (2016) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164:770–779. https://doi.org/10.1016/j.cell.2016.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang L, Kerkar SP, Yu Z et al (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther 19:751–759. https://doi.org/10.1038/mt.2010.313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Krenciute G, Prinzing BL, Yi Z et al (2017) Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 5:571–581. https://doi.org/10.1158/2326-6066.CIR-16-0376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Foster AE, Heslop HE (2008) Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-b receptor. J Immunother 31:6

    Article  Google Scholar 

  127. Sengupta S, Katz SC, Sengupta S, Sampath P (2018) Glycogen synthase kinase 3 inhibition lowers PD-1 expression, promotes long-term survival and memory generation in antigen-specific CAR-T cells. Cancer Lett 433:131–139. https://doi.org/10.1016/j.canlet.2018.06.035

    Article  CAS  PubMed  Google Scholar 

  128. Cherkassky L, Morello A, Villena-Vargas J et al (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Investig 126:3130–3144. https://doi.org/10.1172/JCI83092

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kuhn NF, Purdon TJ, van Leeuwen DG et al (2019) CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 35:473–488.e6. https://doi.org/10.1016/j.ccell.2019.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lorrey SJ, Sanchez-Perez L, Fecci PE (2019) Rescuing imperfect antigens for immuno-oncology. Nat Biotechnol 37:1002–1003. https://doi.org/10.1038/s41587-019-0248-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by National Institute of Neurological Disorders and Stroke (Grant No. 1R35 NS105068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideho Okada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwok, D., Okada, H. T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment. J Neurooncol 147, 281–295 (2020). https://doi.org/10.1007/s11060-020-03450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03450-7

Keywords

Navigation