Skip to main content

Advertisement

Log in

Clinical implications of in silico mathematical modeling for glioblastoma: a critical review

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma remains a clinical challenge in spite of years of extensive research. Novel approaches are needed in order to integrate the existing knowledge. This is the potential role of mathematical oncology. This paper reviews mathematical models on glioblastoma from the clinical doctor’s point of view, with focus on 3D modeling approaches of radiation response of in vivo glioblastomas based on contemporary imaging techniques. As these models aim to provide a clinically useful tool in the era of personalized medicine, the integration of the latest advances in molecular and imaging science and in clinical practice by the in silico models is crucial for their clinical relevance. Our aim is to indicate areas of GBM research that have not yet been addressed by in silico models and to point out evidence that has come up from in silico experiments, which may be worth considering in the clinic. This review examines how close these models have come in predicting the outcome of treatment protocols and in shaping the future of radiotherapy treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G (2014) High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25:93–101. doi:10.1093/annonc/mdu050

    Article  Google Scholar 

  2. Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17:iv1–iv62. doi:10.1093/neuonc/nov189

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kelly PJ (1993) Computed tomography and histologic limits in glial neoplasms: tumor types and selection for volumetric resection. Surg Neurol 39(6):458–465. http://www.ncbi.nlm.nih.gov/pubmed/8390726

  4. Muller C, Holtschmidt J, Auer M et al (2014) Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med 6(247):247ra101–247ra101. doi:10.1126/scitranslmed.3009095

    Article  PubMed  Google Scholar 

  5. Gil-Salú JL, Román P, Benítez E, Maestro E, Pérez-Requena J, López-Escobar M (2004) [Survival analysis following the addition of temozolomide to surgery and radiotherapy in patients with glioblastoma multiforme]. Neurocirugia 15(2):144–150. http://www.ncbi.nlm.nih.gov/pubmed/15159792

  6. Koshy M, Villano JL, Dolecek TA et al (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol 107(1):207–212. doi:10.1007/s11060-011-0738-7

    Article  PubMed  Google Scholar 

  7. Young RM, Jamshidi A, Davis G, Sherman JH (2015) Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med. doi:10.3978/j.issn.2305-5839.2015.05.10

    PubMed  PubMed Central  Google Scholar 

  8. Gatenby RA, Maini PK (2003) Mathematical oncology: cancer summed up. Nature 421(6921):321–321. doi:10.1038/421321a

    Article  CAS  PubMed  Google Scholar 

  9. Marcu LG, Harriss-Phillips WM (2012) In silico modelling of treatment-induced tumour cell kill: developments and advances. Comput Math Methods Med 2012:960256. doi:10.1155/2012/960256

    Article  PubMed  PubMed Central  Google Scholar 

  10. Swanson KR, Alvord EC, Murray JD (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86(1):14–18. doi:10.1038/sj.bjc.6600021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Swanson KR, Harpold HLP, Peacock DL et al (2008) Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle. Clin Oncol 20(4):301–308. doi:10.1016/j.clon.2008.01.006

    Article  CAS  Google Scholar 

  12. Harpold HLP, Alvord EC, Swanson KR (2007) The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol 66(1):1–9. doi:10.1097/nen.0b013e31802d9000

    Article  PubMed  Google Scholar 

  13. Swanson KR, Alvord EC, Murray JD (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–329. http://www.ncbi.nlm.nih.gov/pubmed/11063134. Accessed 12 March 2017

  14. Collins DL, Zijdenbos AP, Kollokian V et al (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17(3):463–468. doi:10.1109/42.712135

    Article  CAS  PubMed  Google Scholar 

  15. Mabray MC, Barajas RF, Cha S, Cha S (2015) Modern brain tumor imaging. Brain Tumor Res Treat 3(1):8–23. doi:10.14791/btrt.2015.3.1.8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Silbergeld DL, Chicoine MR (1997) Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg 86(3):525–531. doi:10.3171/jns.1997.86.3.0525

    Article  CAS  PubMed  Google Scholar 

  17. Wilson CB (1992) Glioblastoma: the past, the present, and the future. Clin Neurosurg 38:32–48. https://www.ncbi.nlm.nih.gov/pubmed/1311227

  18. Swanson KR, Rostomily RC, Alvord EC (2008) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98:113–119. doi:10.1038/sj.bjc.6604125

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, Rochhill J, Mrugala M et al (2009) Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel bio-mathematical model. Cancer Res 69(23):9133–9140. doi:10.1158/0008-5472.CAN-08-3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rockne R, Alvord EC, Rockhill JK, Swanson KR (2009) A mathematical model for brain tumor response to radiation therapy. J Math Biol 58(4–5):561–578. doi:10.1007/s00285-008-0219-6

    Article  CAS  PubMed  Google Scholar 

  21. Rockne R, Rochhill J, Mrugala M et al (2010) Predicting efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55(12):3271–3285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baldock AL, Ahn S, Rockne R et al (2014) Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS ONE 9(10):7–9. doi:10.1371/journal.pone.0099057

    Article  Google Scholar 

  23. Roniotis A, Marias K, Sakkalis V, Manikis GC, Zervakis M (2012) Simulating radiotherapy effect in high-grade glioma by using diffusive modeling and brain atlases. J Biomed Biotechnol. doi:10.1155/2012/715812

    PubMed  PubMed Central  Google Scholar 

  24. Holdsworth CH, Corwin D, Stewart RD et al (2012) Adaptive IMRT using a multiobjective evolutionary algorithm integrated with a diffusion-invasion model of glioblastoma. Phys Med Biol 57(24):8271–8283. doi:10.1088/0031-9155/57/24/8271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Unkelbach J, Menze BH, Konukoglu E, Dittmann F, Ayache N, Shih HA (2014) Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution. Phys Med Biol 59(3):771–789. doi:10.1088/0031-9155/59/3/771

    Article  PubMed  Google Scholar 

  26. Neal ML, Trister AD, Cloke T et al (2013) Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric. PLoS ONE. doi:10.1371/journal.pone.0051951

    Google Scholar 

  27. Neal ML, Trister AD, Ahn S et al (2013) Response classification based on a minimal model of glioblastoma growth is prognostic for clinical outcomes and distinguishes progression from pseudoprogression. Cancer Res 73(10):2976–2986. doi:10.1158/0008-5472.CAN-12-3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Corwin D, Holdsworth C, Rockne RC et al (2013) Toward patient-specific, biologically optimized radiation therapy plans for the treatment of glioblastoma. PLoS ONE. doi:10.1371/journal.pone.0079115

    PubMed  PubMed Central  Google Scholar 

  29. Zhao Y, Adjei AA (2015) Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist 20(6):660–673. doi:10.1634/theoncologist.2014-0465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Szeto MD, Chakraborty G, Hadley J et al (2009) Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res 69(10):4502–4509. doi:10.1158/0008-5472.CAN-08-3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gilbert MR, Dignam JJ, Armstrong TS et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 3708370(20):699–708. doi:10.1056/NEJMoa1308573

    Article  Google Scholar 

  32. Chinot OL, Wick W, Cloughesy T (2014) Bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(21):2049. http://www.ncbi.nlm.nih.gov/pubmed/24860870

  33. Hawkins-Daarud A, Rockne RC, Anderson ARA, Swanson KR (2013) Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor. Front Oncol 3(April):66. doi:10.3389/fonc.2013.00066

    PubMed  PubMed Central  Google Scholar 

  34. Saut O, Lagaert JB, Colin T, Fathallah-Shaykh HM (2014) A multilayer grow-or-go model for GBM: effects of invasive cells and anti-angiogenesis on growth. Bull Math Biol 76(9):2306–2333. doi:10.1007/s11538-014-0007-y

    Article  CAS  PubMed  Google Scholar 

  35. Gerlee P, Nelander S (2012) The impact of phenotypic switching on glioblastoma growth and invasion. PLoS Comput Biol. doi:10.1371/journal.pcbi.1002556

    PubMed  PubMed Central  Google Scholar 

  36. Greene GM, Hitchon PW, Schelper RL, Yuh W, Dyste GN (1989) Diagnostic yield in CT-guided stereotactic biopsy of gliomas. J Neurosurg 71(4):494–497. doi:10.3171/jns.1989.71.4.0494

    Article  CAS  PubMed  Google Scholar 

  37. Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2012) “Go or Grow”: the key to the emergence of invasion in tumour progression? Math Med Biol 29(1):49–65. doi:10.1093/imammb/dqq011

    Article  CAS  PubMed  Google Scholar 

  38. Colombo MC, Giverso C, Faggiano E, Boffano C, Acerbi F, Ciarletta P (2015) Towards the personalized treatment of glioblastoma: integrating patient-specific clinical data in a continuous mechanical model. PLoS ONE 10(7):1–23. doi:10.1371/journal.pone.0132887

    Article  Google Scholar 

  39. Düchting W, Ulmer W, Lehrig R, Ginsberg T, Dedeleit E (1992) Computer simulation and modelling of tumor spheroid growth and their relevance for optimization of fractionated radiotherapy. Strahlenther Onkol 168(6):354–360. http://www.ncbi.nlm.nih.gov/pubmed/1320297. Accessed 13 March 2017

  40. Wasserman R, Acharya R, Sibata C, Shin KH (1996) A patient-specific in vivo tumor model. Math Biosci 136(2):111–140. doi:10.1016/0025-5564(96)00045-4

    Article  CAS  PubMed  Google Scholar 

  41. Kansal AR, Torquato S, Harsh GR, Chiocca EA, Deisboeck TS (2000) Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 203(4):367–382. doi:10.1006/jtbi.2000.2000

    Article  CAS  PubMed  Google Scholar 

  42. Kansal AR, Torquato S, Harsh IV GR, Chiocca EA, Deisboeck TS (2000) Cellular automaton of idealized brain tumor growth dynamics. Biosystems 55:119–127. doi:10.1016/S0303-2647(99)00089-1

    Article  CAS  PubMed  Google Scholar 

  43. Duchting W, Ginsberg T, Ulmer W (1995) Chapter 7: Biomathematical engineering of cell renewal systems: modeling of radiogenic responses induced by fractionated irradiation in malignant and normal tissue. Stem Cells 13(S1):301–306. doi:10.1002/stem.5530130737

    Article  PubMed  Google Scholar 

  44. Düchting W, Ginsberg T, Ulmerb W (1995) Modeling of radiogenic responses induced by fractionated irradiation in malignant and normal tissue. Stem Cells 13:301–306

    Article  PubMed  Google Scholar 

  45. Dionysiou DD, Stamatakos GS, Uzunoglu NK, Nikita KS, Marioli A (2004) A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J Theor Biol 230(1):1–20. doi:10.1016/j.jtbi.2004.03.024

    Article  CAS  PubMed  Google Scholar 

  46. Dionysiou DD, Peristeris T, Stamatakos GS, Nikita KS, Uzunoglu NK (2004) The genetic profile of a tumor as a determinant of its response to radiotherapy: a computer simulation of two different radiotherapeutic schemes. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vols 1–7. 26(gap 2):3035–3038

  47. Dionysiou DD, Stamatakos GS, Gintides D, Uzunoglu N, Kyriaki K (2008) Critical parameters determining standard radiotherapy treatment outcome for glioblastoma multiforme: a computer simulation. Open Biomed Eng J 2(v):43–51. doi:10.2174/1874120700802010043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marias K, Dionysiou D, Sakkalis V et al (2011) Clinically driven design of multi-scale cancer models: the ContraCancrum project paradigm. Interface Focus 1(3):450–461. doi:10.1098/rsfs.2010.0037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. May CP, Kolokotroni E, Stamatakos GS, Büchler P (2011) Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation. Prog Biophys Mol Biol 107(1):193–199. doi:10.1016/j.pbiomolbio.2011.06.007

    Article  PubMed  Google Scholar 

  50. Baldock AL, Rockne RC, Boone AD et al (2013) From patient-specific mathematical neuro-oncology to precision medicine. Front Oncol 3(April):1–11. doi:10.3389/fonc.2013.00062

    Google Scholar 

  51. Dionysiou DD, Stamatakos GS (2006) Applying a 4D multiscale in vivo tumor growth model to the exploration of radiotherapy scheduling: the effects of weekend treatment gaps and p53 gene status on the response of fast growing solid tumors. Cancer Inform 2:113–121

    Article  CAS  Google Scholar 

  52. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. doi:10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. doi:10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  54. Chinot OL, Macdonald DR, Abrey LE, Zahlmann G, Kerloëguen Y, Cloughesy TF (2013) Response assessment criteria for glioblastoma: practical adaptation and implementation in clinical trials of antiangiogenic therapy. Curr Neurol Neurosci Rep 13:347. doi:10.1007/s11910-013-0347-2

    Article  PubMed  PubMed Central  Google Scholar 

  55. Weller M, Stupp R, Reifenberger G et al (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6(1):39–51. doi:10.1038/nrneurol.2009.197

    Article  CAS  PubMed  Google Scholar 

  56. Sathyan P, Zinn PO, Marisetty AL et al (2015) Mir-21-Sox2 axis delineates glioblastoma subtypes with prognostic impact. J Neurosci 35(45):15097–15112. doi:10.1523/JNEUROSCI.1265-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cihoric N, Tsikkinis A, Minniti G et al (2017) Current status and perspectives of interventional clinical trials for glioblastoma—analysis of ClinicalTrials.gov. Radiat Oncol 12(1):1. doi:10.1186/s13014-016-0740-5

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pedicini P, Fiorentino A, Simeon V et al (2014) Clinical radiobiology of glioblastoma multiforme. Strahlentherapie Onkol 190(10):925–932. doi:10.1007/s00066-014-0638-9

    Article  Google Scholar 

  59. Arvold ND, Reardon DA (2014) Treatment options and outcomes for glioblastoma in the elderly patient. Clin Interv Aging 9:357–367. doi:10.2147/CIA.S44259

    PubMed  PubMed Central  Google Scholar 

  60. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  61. Weller M, van den Bent M, Hopkins K et al (2014) EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 15(9):e395–e403. doi:10.1016/S1470-2045(14)70011-7

    Article  PubMed  Google Scholar 

  62. Hawkins-Daarud A, Rockne R, Corwin D, Anderson ARA, Kinahan P, Swanson KR (2015) In silico analysis suggests differential response to bevacizumab and radiation combination therapy in newly diagnosed glioblastoma. J Royal Soc Interface 12(109):20150388. doi:10.1098/rsif.2015.0388

    Article  Google Scholar 

  63. Antipas VP, Stamatakos GS, Uzunoglu NK, Dionysiou DD, Dale RG (2004) A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: parametric validation concerning oxygen enhancement ratio and cell cycle duration. Phys Med Biol 49(8):1485–1504

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MP performed a literature research. MP, AZ and VK wrote the manuscript. VK, GSS, and NKU provided guidance throughout the research and writing of the manuscript. All the authors made critical revisions, discussed and approved the final manuscript.

Corresponding author

Correspondence to Vassilis Kouloulias.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protopapa, M., Zygogianni, A., Stamatakos, G.S. et al. Clinical implications of in silico mathematical modeling for glioblastoma: a critical review. J Neurooncol 136, 1–11 (2018). https://doi.org/10.1007/s11060-017-2650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2650-2

Keywords

Navigation