Skip to main content

Advertisement

Log in

Safety, feasibility, and optimization of intra-arterial mitoxantrone delivery to gliomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Mitoxantrone is a highly cytotoxic antineoplastic drug, however, its poor penetration of the blood–brain barrier has limited its role in the treatment of brain cancers. We hypothesize that intra-arterial (IA) delivery of mitoxantrone may enhance its capacity for regional brain deposition thus expanding its potential as a brain tumor therapy agent. In this study we assessed the dose-response characteristics as well as the feasibility and safety of mitoxantrone delivery to the brain and specifically to gliomas in a rodent model. We show that delivery optimization utilizing the technique of intra-arterial transient cerebral hypoperfusion (IA-TCH) facilitates achieving the highest peak- and end- brain drug concentrations as compared to intravenous and IA delivery without hypoperfusion. Additionally, we observed significant tumor-specific uptake of mitoxantrone when delivered by the IA-TCH method. No untoward effects of IA-TCH delivery of mitoxantrone were observed. The IA-TCH method is shown to be a safely tolerated and feasible strategy for delivering mitoxantrone to tumors in the glioma model tested. Additional investigation is warranted to determine if IA-TCH delivery of mitoxantrone produces clinically relevant benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Durr FE (1984) Biologic and biochemical effects of mitoxantrone. Semin Oncol 11(3 Suppl 1):3–10

    CAS  PubMed  Google Scholar 

  2. Faulds D, Balfour JA, Chrisp P, Langtry HD (1991) Mitoxantrone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs 41(3):400–449

    Article  CAS  PubMed  Google Scholar 

  3. Jordan JP, Hand CM, Markowitz RS, Black P (1992) Test for chemotherapeutic sensitivity of cerebral gliomas: use of colorimetric MTT assay. J Neurooncol 14(1):19–35

    Article  CAS  PubMed  Google Scholar 

  4. White RJ, Durr FE (1985) Development of mitoxantrone. Invest New Drugs 3(2):85–93

    Article  CAS  PubMed  Google Scholar 

  5. Boiardi A, Bartolomei M, Silvani A, Eoli M, Salmaggi A, Lamperti E, Milanesi I, Botturi A, Rocca P, Bodei L, Broggi G, Paganelli G (2005) Intratumoral delivery of mitoxantrone in association with 90-Y radioimmunotherapy (RIT) in recurrent glioblastoma. J Neurooncol 72(2):125–131

    Article  CAS  PubMed  Google Scholar 

  6. Boiardi A, Eoli M, Pozzi A, Salmaggi A, Broggi G, Silvani A (1999) Locally delivered chemotherapy and repeated surgery can improve survival in glioblastoma patients. Ital J Neurol Sci 20(1):43–48

    Article  CAS  PubMed  Google Scholar 

  7. Boiardi A, Eoli M, Salmaggi A, Lamperti E, Botturi A, Broggi G, Bissola L, Finocchiaro G, Silvani A (2005) Systemic temozolomide combined with loco-regional mitoxantrone in treating recurrent glioblastoma. J Neurooncol 75(2):215–220

    Article  CAS  PubMed  Google Scholar 

  8. Ferroli P, Broggi M, Franzini A, Maccagnano E, Lamperti M, Boiardi A, Broggi G (2006) Surgifoam and mitoxantrone in the glioblastoma multiforme postresection cavity: the first step of locoregional chemotherapy through an ad hoc-placed catheter: technical note. Neurosurgery 59(2):E433–E434 (discussion E433-434)

    Article  PubMed  Google Scholar 

  9. Saini M, Roser F, Hussein S, Samii M, Bellinzona M (2004) Intralesional mitoxantrone biopolymer-mediated chemotherapy prolongs survival in rats with experimental brain tumors. J Neurooncol 68(3):225–232

    Article  PubMed  Google Scholar 

  10. Yemisci M, Bozdag S, Cetin M, Soylemezoglu F, Capan Y, Dalkara T, Vural I (2006) Treatment of malignant gliomas with mitoxantrone-loaded poly (lactide-co-glycolide) microspheres. Neurosurgery 59(6):1296–1302 (discussion 1302–1293)

    Article  PubMed  Google Scholar 

  11. Joshi S, Wang M, Etu JJ, Suckow RF, Cooper TB, Feinmark SJ, Bruce JN, Fine RL (2007) Transient cerebral hypoperfusion enhances intraarterial carmustine deposition into brain tissue. J Neurooncol 86(2):123–132

    Article  PubMed  Google Scholar 

  12. Joshi S, Singh-Moon RP, Wang M, Chaudhuri DB, Holcomb M, Straubinger NL, Bruce JN, Bigio IJ, Straubinger RM (2014) Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue. J Neurooncol. doi:10.1007/s11060-014-1421-6

    Google Scholar 

  13. Joshi S, Singh-Moon R, Wang M, Chaudhuri DB, Ellis JA, Bruce JN, Bigio IJ, Straubinger RM (2014) Cationic surface charge enhances early regional deposition of liposomes after intracarotid injection. J Neurooncol 120(3):489–497. doi:10.1007/s11060-014-1584-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen J, Cooke JR, Ellis JA, Deci M, Emala CW, Bruce JN, Bigio IJ, Straubinger RM, Joshi S (2016) Cationizable lipid micelles as vehicles for intraarterial glioma treatment. J Neurooncol. doi:10.1007/s11060-016-2088-y

    Google Scholar 

  15. Pile-Spellman J, Young WL, Joshi S, Duong DH, Vang MC, Hartmann A, Kahn RA, Rubin DA, Prestigiacomo CJ, Ostapkovich ND (1999) Adenosine-induced cardiac pause for endovascular embolization of cerebral arteriovenous malformations: technical case report. Neurosurgery 44(4):881–886 (discussion 886–887)

    Article  CAS  PubMed  Google Scholar 

  16. Riina HA, Knopman J, Greenfield JP, Fralin S, Gobin YP, Tsiouris AJ, Souweidane MM, Boockvar JA (2010) Balloon-assisted superselective intra-arterial cerebral infusion of bevacizumab for malignant brainstem glioma. A technical note. Interv Neuroradiol 16(1):71–76

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Aigner KR (1998) Intra-arterial infusion: overview and novel approaches. Semin Surg Oncol 14(3):248–253

    Article  CAS  PubMed  Google Scholar 

  18. Reif R, Wang M, Joshi S, A’Amar O, Bigio IJ (2007) Optical method for real-time monitoring of drug concentrations facilitates the development of novel methods for drug delivery to brain tissue. J Biomed Opt 12(3):034036

    Article  PubMed  Google Scholar 

  19. Joshi S, Reif R, Wang M, Zhang J, Ergin A, Bruce JN, Housepian EM, Fine RL, Bigio IJ (2011) Intraarterial mitoxantrone delivery in rabbits: an optical pharmacokinetic study. Neurosurgery 69(3):706

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ergin A, Wang M, Zhang J, Bigio I, Joshi S (2012) Noninvasive in vivo optical assessment of blood brain barrier permeability and brain tissue drug deposition in rabbits. J Biomed Opt 17(5):057008

    Article  PubMed  PubMed Central  Google Scholar 

  21. Joshi S, Singh-Moon RP, Ellis JA, Chaudhuri DB, Wang M, Reif R, Bruce JN, Bigio IJ, Straubinger RM (2014) Cerebral hypoperfusion-assisted intraarterial deposition of liposomes in normal and glioma-bearing rats. Neurosurgery NIHMS 624641 (in press)

  22. Toledano A, Azria D, Garaud P, Fourquet A, Serin D, Bosset JF, Miny-Buffet J, Favre A, Le Floch O, Calais G (2007) Phase III trial of concurrent or sequential adjuvant chemoradiotherapy after conservative surgery for early-stage breast cancer: final results of the ARCOSEIN trial. J Clin Oncol 25(4):405–410. doi:10.1200/JCO.2006.07.8576

    Article  CAS  PubMed  Google Scholar 

  23. Damon LE, Wolf JL, Rugo HS, Gold E, Zander AR, Cassidy M, Cecchi G, Cohen N, Irwin D, Tracy M, Ries CA, Linker CA (2000) High-dose chemotherapy (CTM) for breast cancer. Bone Marrow Transplant 26(3):257–268. doi:10.1038/sj.bmt.1702481

    Article  CAS  PubMed  Google Scholar 

  24. Charest G, Sanche L, Fortin D, Mathieu D, Paquette B (2012) Glioblastoma treatment: bypassing the toxicity of platinum compounds by using liposomal formulation and increasing treatment efficiency with concomitant radiotherapy. Int J Radiat Oncol Biol Phys 84(1):244–249. doi:10.1016/j.ijrobp.2011.10.054

    Article  CAS  PubMed  Google Scholar 

  25. Klopp CT, Alford TC, Bateman J, Berry GN, Winship T (1950) Fractionated intra-arterial cancer; chemotherapy with methyl bis amine hydrochloride; a preliminary report. Ann Surg 132(4):811–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boockvar JA, Tsiouris AJ, Hofstetter CP, Kovanlikaya I, Fralin S, Kesavabhotla K, Seedial SM, Pannullo SC, Schwartz TH, Stieg P, Zimmerman RD, Knopman J, Scheff RJ, Christos P, Vallabhajosula S, Riina HA (2010) Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood–brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg 114(3):624–632

    Article  PubMed  PubMed Central  Google Scholar 

  27. Riina HA, Burkhardt JK, Santillan A, Bassani L, Patsalides A, Boockvar JA (2012) Short-term clinico-radiographic response to super-selective intra-arterial cerebral infusion of bevacizumab for the treatment of vestibular schwannomas in neurofibromatosis type 2. Interv Neuroradiol 18 (2):127–132

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Riina HA, Fraser JF, Fralin S, Knopman J, Scheff RJ, Boockvar JA (2009) Superselective intraarterial cerebral infusion of bevacizumab: a revival of interventional neuro-oncology for malignant glioma. J Exp Ther Oncol 8(2):145–150

    CAS  PubMed  Google Scholar 

  29. Shin BJ, Burkhardt JK, Riina HA, Boockvar JA (2012) Superselective intra-arterial cerebral infusion of novel agents after blood–brain disruption for the treatment of recurrent glioblastoma multiforme: a technical case series. Neurosurg Clin of N Am 23(2):323–329, ix–x. doi:10.1016/j.nec.2012.01.008

    Article  Google Scholar 

  30. Dedrick RL (1988) Arterial drug infusion: pharmacokinetic problems and pitfalls. J Natl Cancer Inst 80(2):84–89

    Article  CAS  PubMed  Google Scholar 

  31. Ellis JA, Banu M, Hossain SS, Singh-Moon R, Lavine SD, Bruce JN, Joshi S (2015) Reassessing the role of intra-arterial drug delivery for glioblastoma multiforme treatment. J Drug Deliv 2015:405735. doi:10.1155/2015/405735

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Cancer Institute at the National Institutes of Health (RO1-CA-138643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Ellis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in this study were in accordance with the ethical standards of the Columbia University Institutional Review Board and the Animal Care and Use Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, J.A., Cooke, J., Singh-Moon, R.P. et al. Safety, feasibility, and optimization of intra-arterial mitoxantrone delivery to gliomas. J Neurooncol 130, 449–454 (2016). https://doi.org/10.1007/s11060-016-2253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2253-3

Keywords

Navigation