Skip to main content

Advertisement

Log in

Current status of intratumoral therapy for glioblastoma

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

With emerging drug delivery technologies becoming accessible, more options are expected to become available to patients with glioblastoma (GBM) in the near future. It is important for clinicians to be familiar with the underlying mechanisms and limitations of intratumoral drug delivery, and direction of recent research efforts. Tumor-adjacent brain is an extremely complex living matrix that creates challenges with normal tissue intertwining with tumor cells. For convection-enhanced delivery (CED), the role of tissue anisotropy for better predicting the biodistribution of the infusate has recently been studied. Computational predictive methods are now available to better plan CED therapy. Catheter design and placement—in addition to the agent being used—are critical components of any protocol. This paper overviews intratumoral therapies for GBM, highlighting key anatomic and physiologic perspectives, selected agents (especially immunotoxins), and some new developments such as the description of the glymphatic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202

    Article  PubMed  Google Scholar 

  3. Juratli TA, Schackert G, Krex D (2013) Current status of local therapy in malignant gliomas: a clinical review of three selected approaches. Pharmacol Ther 139(3):341–358

    Article  CAS  PubMed  Google Scholar 

  4. Kanu OO et al (2009) Glioblastoma multiforme: a review of therapeutic targets. Expert Opin Ther Targets 13(6):701–718

    Article  CAS  PubMed  Google Scholar 

  5. Engelhard HH, Groothuis DG (1999) The blood–brain barrier: structure, function, and response to neoplasia. In: Berger MS, Wilson CB (eds) The gliomas. W.B. Saunders Company, Philadelphia, pp 115–121

    Google Scholar 

  6. Iliff JJ et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):47ra111

    Google Scholar 

  7. Bansal K, Engelhard HH (2000) Gene therapy for brain tumors. Curr Oncol Rep 2(5):463–472

    Article  CAS  PubMed  Google Scholar 

  8. Engelhard HH (2000) The role of interstitial BCNU chemotherapy in the treatment of malignant glioma. Surg Neurol 53(5):458–464

    Article  CAS  PubMed  Google Scholar 

  9. Fung LK et al (1996) Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res 13(5):671–682

    Article  CAS  PubMed  Google Scholar 

  10. Strasser JF et al (1995) Distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea and tracers in the rabbit brain after interstitial delivery by biodegradable polymer implants. J Pharmacol Exp Ther 275(3):1647–1655

    CAS  PubMed  Google Scholar 

  11. Meggs WJ, Hoffman RS (1998) Fatality resulting from intraventricular vincristine administration. J Toxicol Clin Toxicol 36(3):243–246

    Article  CAS  PubMed  Google Scholar 

  12. Jordan MA et al (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci U S A 90(20):9552–9556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lidar Z et al (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100(3):472–479

    Article  CAS  PubMed  Google Scholar 

  14. Sampson JH, B.M., Raghavan R, Mehta AI, Friedman AH, Reardon DA, Petry NA, Barboriak DP, Wong TZ, Zalutsky MR, Lally-Goss D, Bigner DD (2010) Co-localization of gadolinium-DTPA with high molecular weight molecules after intracerebral convection-enhanced delivery in man. Neurosurgery, In Press

  15. Krauze MT et al (2005) Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp Neurol 196(1):104–111

    Article  CAS  PubMed  Google Scholar 

  16. Sonabend AM et al (2011) Prolonged intracerebral convection-enhanced delivery of topotecan with a subcutaneously implantable infusion pump. Neuro Oncol 13(8):886–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sillay K et al (2013) Convection enhanced delivery to the Brain: preparing for gene therapy and protein delivery to the Brain for functional and restorative Neurosurgery by understanding low-flow neurocatheter infusions using the Alaris((R)) system infusion pump. Ann Neurosci 20(2):52–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Laske DW, Youle RJ, Oldfield EH (1997) Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med 3(12):1362–1368

    Article  CAS  PubMed  Google Scholar 

  19. Weaver M, Laske DW (2003) Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol 65(1):3–13

    Article  PubMed  Google Scholar 

  20. Kunwar S et al (2007) Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 25(7):837–844

    Article  CAS  PubMed  Google Scholar 

  21. Bobo RH et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6):2076–2080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Raghavan R et al (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20(4):E12

    Article  PubMed  Google Scholar 

  23. Ding D et al (2010) Convection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1. J Neurooncol 98(1):1–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sampson JH et al (2010) Poor drug distribution as a possible explanation for the results of the PRECISE trial. J Neurosurg 113(2):301–309

    Article  PubMed  Google Scholar 

  25. Sampson J. H. et al. (2007) Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery, 60(2 Suppl 1): p ONS89-98; discussion ONS98-9

  26. Tanner P. G. et al. (2007) Effects of drug efflux on convection-enhanced paclitaxel delivery to malignant gliomas: technical note. Neurosurgery, 61(4): p E880-2; discussion E882

  27. Raghavan R et al (2010) Fluid infusions from catheters into elastic tissue: I. Azimuthally symmetric backflow in homogeneous media. Phys Med Biol 55(1):281–304

    Article  PubMed  Google Scholar 

  28. Ivanchenko O. et al. (2010) Design of backflow-free catheters based on micro-fluid dynamics, in BMES 2010 annual fall meeting, Austin

  29. Raghavan R. (2010) Intraparenchymal delivery and its discontents. Drug delivery to the central nervous system, p 85–135

  30. Li D et al. (2010) Optimal catheter placement for chemotherapy, in proceedings of 20th european symposium on computer aided process engineering (ESCAPE), p 223–228

  31. Somayaj MB et al (2008) Systematic design of drug delivery therapies. Comp Chem Eng 32:89–98

    Article  Google Scholar 

  32. Zhang L et al (2007) Discovery of transport and reaction properties in distributed systems. AIChE J 53(2):381–396

    Article  CAS  Google Scholar 

  33. Sampson JH et al (2007) Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro-oncology 9(3):343–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Raghavan R, and M. Brady (2011) Predictive models of pressure-driven infusions into brain parenchyma. Phys Med Biol, In Press

  35. Linninger AA et al (2008) Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. J Biomech 41(10):2176–2187

    Article  PubMed  Google Scholar 

  36. Linninger AA et al (2008) Prediction of convection-enhanced drug delivery to the human brain. J Theor Biol 250(1):125–138

    Article  CAS  PubMed  Google Scholar 

  37. Linninger AA et al (2008) Rigorous mathematical modeling techniques for optimal delivery of macromolecules to the brain. IEEE Trans Biomed Eng 55(9):2303–2313

    Article  PubMed  Google Scholar 

  38. Ivanchenko O, Sindhwani N, Linninger A (2012) Exact solution of the convection-diffusion problem in cylindrical geometry. AIChE J 58(4):1299–1302

    Article  CAS  Google Scholar 

  39. Sindhwani N et al (2011) Methods for determining agent concentration profiles in agarose gel during convection-enhanced delivery. IEEE Trans Biomed Eng 58(3):626–632

    Article  PubMed  Google Scholar 

  40. Ivanchenko O, Sindhwani N, Linninger A (2010) Experimental techniques for studying poroelasticity in brain phantom gels under high flow microinfusion. J Biomech Eng 132(5):051008

    Article  CAS  PubMed  Google Scholar 

  41. Maier-Hauff K et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103(2):317–324

    Article  PubMed Central  PubMed  Google Scholar 

  42. Lueshen E et al (2014) Intrathecal magnetic drug targeting using gold-coated magnetite nanoparticles in a human spine model. Nanomedicine (Lond) 9(8):1155–1169

    Article  CAS  Google Scholar 

  43. Lueshen E et al (2014) Implant-Assisted intrathecal magnetic drug targeting to aid in the therapeutic nanoparticle localization for potential treatment of central nervous system disorders. J Biomed Nanotechnol 11(2):253–261

    Article  Google Scholar 

  44. Wang P, Olbricht WL (2011) Fluid and solid mechanics in a poroelastic network induced by ultrasound. J Biomech 44(1):28–33

    Article  CAS  PubMed  Google Scholar 

  45. Kunwar S et al (2006) Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg Focus 20(4):E15

    PubMed  Google Scholar 

  46. Vogelbaum MA et al (2007) Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 61(5):1031–1037; discussion 1037–1038

    Article  PubMed  Google Scholar 

  47. Rand RW et al (2000) Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res 6(6):2157–2165

    CAS  PubMed  Google Scholar 

  48. Weber F et al (2003) Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol 64(1–2):125–137

    PubMed  Google Scholar 

  49. Schlingensiepen R et al (2005) Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15(2):94–104

    Article  CAS  PubMed  Google Scholar 

  50. Patel SJ et al (2005) Safety and feasibility of convection-enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery 56(6):1243–1252; discussion 1252–1253

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit I. Mehta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, A.I., Linninger, A., Lesniak, M.S. et al. Current status of intratumoral therapy for glioblastoma. J Neurooncol 125, 1–7 (2015). https://doi.org/10.1007/s11060-015-1875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1875-1

Keywords

Navigation