Skip to main content

Advertisement

Log in

Aberrant immunostaining pattern of the CD24 glycoprotein in clinical samples and experimental models of pediatric medulloblastomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The CD24 glycoprotein is a mediator of neuronal proliferation, differentiation and immune suppression in the normal CNS, and a proposed cancer biomarker in multiple peripheral tumor types. We performed a comparative analysis of CD24 gene expression in a large cohort of pediatric and adult brain tumors (n = 813), and further characterized protein expression in tissue sections (n = 39), primary brain tumor cultures (n = 12) and a novel orthotopic group 3 medulloblastoma xenograft model. Increased CD24 gene expression was demonstrated in ependymomas, medulloblastomas, anaplastic astrocytomas and glioblastomas, although medulloblastomas displayed higher expression than all other tumor entities. Preferential expression of CD24 in medulloblastomas was confirmed at protein level by immunostaining and computerized image analysis of cryosections. Morphologies and immunophenotyping of CD24+ cells in tissue sections tentatively suggested disparate functions in different tumor subsets. Notably, protein staining of medulloblastoma cells was associated with prominent cytoplasmic and membranous granules, enabling rapid and robust identification of medulloblastoma cells in clinical tissue samples, as well as in experimental model systems. In conclusion, our results implicate CD24 as a clinically and experimentally useful medulloblastoma immunomarker. Although our results encourage further functional studies of CD24 as a potential molecular target in subsets of brain tumors, the promiscuous expression of CD24 in vivo highlights the importance of specificity in the future design of such targeted treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmed MA, Aleskandarany MA, Rakha EA, Moustafa RZ, Benhasouna A, Nolan C, Green AR, Ilyas M, Ellis IO (2012) A CD44(−)/CD24(+) phenotype is a poor prognostic marker in early invasive breast cancer. Breast Cancer Res Treat 133(3):979–995. doi:10.1007/s10549-011-1865-8

    Article  CAS  PubMed  Google Scholar 

  2. Auvergne RM, Sim FJ, Wang S, Chandler-Militello D, Burch J, Al Fanek Y, Davis D, Benraiss A, Walter K, Achanta P, Johnson M, Quinones-Hinojosa A, Natesan S, Ford HL, Goldman SA (2013) Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes. Cell Rep 3(6):2127–2141. doi:10.1016/j.celrep.2013.04.035

    Article  CAS  PubMed  Google Scholar 

  3. Baryawno N, Rahbar A, Wolmer-Solberg N, Taher C, Odeberg J, Darabi A, Khan Z, Sveinbjornsson B, FuskevAg OM, Segerstrom L, Nordenskjold M, Siesjo P, Kogner P, Johnsen JI, Soderberg-Naucler C (2011) Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. J Clin Invest 121(10):4043–4055. doi:10.1172/JCI57147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T, Yagita H, Sleeman JP (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65(23):10783–10793. doi:10.1158/0008-5472.CAN-05-0619

    Article  CAS  PubMed  Google Scholar 

  5. Boon K, Edwards JB, Siu IM, Olschner D, Eberhart CG, Marra MA, Strausberg RL, Riggins GJ (2003) Comparison of medulloblastoma and normal neural transcriptomes identifies a restricted set of activated genes. Oncogene 22(48):7687–7694. doi:10.1038/sj.onc.1207043

    Article  CAS  PubMed  Google Scholar 

  6. Calaora V, Chazal G, Nielsen PJ, Rougon G, Moreau H (1996) mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience 73(2):581–594

    Article  CAS  PubMed  Google Scholar 

  7. Cao X, Geradts J, Dewhirst MW, Lo HW (2012) Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells. Oncogene 31(1):104–115. doi:10.1038/onc.2011.219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chou YY, Jeng YM, Lee TT, Hu FC, Kao HL, Lin WC, Lai PL, Hu RH, Yuan RH (2007) Cytoplasmic CD24 expression is a novel prognostic factor in diffuse-type gastric adenocarcinoma. Ann Surg Oncol 14(10):2748–2758. doi:10.1245/s10434-007-9501-x

    Article  PubMed  Google Scholar 

  9. Christensen K, Aaberg-Jessen C, Andersen C, Goplen D, Bjerkvig R, Kristensen BW (2010) Immunohistochemical expression of stem cell, endothelial cell, and chemosensitivity markers in primary glioma spheroids cultured in serum-containing and serum-free medium. Neurosurgery 66(5):933–947. doi:10.1227/01.NEU.0000368393.45935.46

    Article  PubMed  Google Scholar 

  10. Clavreul A, Jean I, Preisser L, Chassevent A, Sapin A, Michalak S, Menei P (2009) Human glioma cell culture: two FCS-free media could be recommended for clinical use in immunotherapy. Vitro Cell Dev Biol Anim 45(9):500–511. doi:10.1007/s11626-009-9215-4

    Article  Google Scholar 

  11. Deng J, Gao G, Wang L, Wang T, Yu J, Zhao Z (2012) CD24 expression as a marker for predicting clinical outcome in human gliomas. J Biomed Biotechnol 2012:517172. doi:10.1155/2012/517172

    Article  PubMed Central  PubMed  Google Scholar 

  12. Fattet S, Haberler C, Legoix P, Varlet P, Lellouch-Tubiana A, Lair S, Manie E, Raquin MA, Bours D, Carpentier S, Barillot E, Grill J, Doz F, Puget S, Janoueix-Lerosey I, Delattre O (2009) Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol 218(1):86–94. doi:10.1002/path.2514

    Article  CAS  PubMed  Google Scholar 

  13. Fischer GF, Majdic O, Gadd S, Knapp W (1990) Signal transduction in lymphocytic and myeloid cells via CD24, a new member of phosphoinositol-anchored membrane molecules. J Immunol 144(2):638–641

    CAS  PubMed  Google Scholar 

  14. Fukushima T, Tezuka T, Shimomura T, Nakano S, Kataoka H (2007) Silencing of insulin-like growth factor-binding protein-2 in human glioblastoma cells reduces both invasiveness and expression of progression-associated gene CD24. J Biol Chem 282(25):18634–18644. doi:10.1074/jbc.M609567200

    Article  CAS  PubMed  Google Scholar 

  15. Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE, Daemen A, Bleeker FE, Bralten LB, Kloosterhof NK, De Moor B, Eilers PH, van der Spek PJ, Kros JM, Sillevis Smitt PA, van den Bent MJ, French PJ (2009) Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69(23):9065–9072. doi:10.1158/0008-5472.CAN-09-2307

    Article  CAS  PubMed  Google Scholar 

  16. Hatanpaa KJ, Hu T, Vemireddy V, Foong C, Raisanen JM, Oliver D, Hiemenz MC, Burns DK, White CL 3rd, Whitworth LA, Mickey B, Stegner M, Habib AA, Fink K, Maher EA, Bachoo RM (2014) High expression of the stem cell marker nestin is an adverse prognostic factor in WHO grade II-III astrocytomas and oligoastrocytomas. J Neurooncol 117(1):183–189. doi:10.1007/s11060-014-1376-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hoffman LM, Donson AM, Nakachi I, Griesinger AM, Birks DK, Amani V, Hemenway MS, Liu AK, Wang M, Hankinson TC, Handler MH, Foreman NK (2014) Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol 127(5):731–745. doi:10.1007/s00401-013-1212-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hovestadt V, Remke M, Kool M, Pietsch T, Northcott PA, Fischer R, Cavalli FM, Ramaswamy V, Zapatka M, Reifenberger G, Rutkowski S, Schick M, Bewerunge-Hudler M, Korshunov A, Lichter P, Taylor MD, Pfister SM, Jones DT (2013) Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol 125(6):913–916. doi:10.1007/s00401-013-1126-5

    Article  PubMed Central  PubMed  Google Scholar 

  19. Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, Pounds SB, Rand V, Leary SE, White E, Eden C, Hogg T, Northcott P, Mack S, Neale G, Wang YD, Coyle B, Atkinson J, DeWire M, Kranenburg TA, Gillespie Y, Allen JC, Merchant T, Boop FA, Sanford RA, Gajjar A, Ellison DW, Taylor MD, Grundy RG, Gilbertson RJ (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466(7306):632–636. doi:10.1038/nature09173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ, Zichner T, Lambert SR, Ryzhova M, Quang DA, Fontebasso AM, Stutz AM, Hutter S, Zuckermann M, Sturm D, Gronych J, Lasitschka B, Schmidt S, Seker-Cin H, Witt H, Sultan M, Ralser M, Northcott PA, Hovestadt V, Bender S, Pfaff E, Stark S, Faury D, Schwartzentruber J, Majewski J, Weber UD, Zapatka M, Raeder B, Schlesner M, Worth CL, Bartholomae CC, von Kalle C, Imbusch CD, Radomski S, Lawerenz C, van Sluis P, Koster J, Volckmann R, Versteeg R, Lehrach H, Monoranu C, Winkler B, Unterberg A, Herold-Mende C, Milde T, Kulozik AE, Ebinger M, Schuhmann MU, Cho YJ, Pomeroy SL, von Deimling A, Witt O, Taylor MD, Wolf S, Karajannis MA, Eberhart CG, Scheurlen W, Hasselblatt M, Ligon KL, Kieran MW, Korbel JO, Yaspo ML, Brors B, Felsberg J, Reifenberger G, Collins VP, Jabado N, Eils R, Lichter P, Pfister SM (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45(8):927–932. doi:10.1038/ng.2682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J, Mrsic A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3(8):e3088. doi:10.1371/journal.pone.0003088

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kristiansen G, Denkert C, Schluns K, Dahl E, Pilarsky C, Hauptmann S (2002) CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol 161(4):1215–1221. doi:10.1016/S0002-9440(10)64398-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kristiansen G, Machado E, Bretz N, Rupp C, Winzer KJ, Konig AK, Moldenhauer G, Marme F, Costa J, Altevogt P (2010) Molecular and clinical dissection of CD24 antibody specificity by a comprehensive comparative analysis. Lab Invest 90(7):1102–1116. doi:10.1038/labinvest.2010.70

    Article  CAS  PubMed  Google Scholar 

  24. Kristiansen G, Schluns K, Yongwei Y, Denkert C, Dietel M, Petersen I (2003) CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br J Cancer 88(2):231–236. doi:10.1038/sj.bjc.6600702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lambert SR, Witt H, Hovestadt V, Zucknick M, Kool M, Pearson DM, Korshunov A, Ryzhova M, Ichimura K, Jabado N, Fontebasso AM, Lichter P, Pfister SM, Collins VP, Jones DT (2013) Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma. Acta Neuropathol 126(2):291–301. doi:10.1007/s00401-013-1124-7

    Article  CAS  PubMed  Google Scholar 

  26. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037. doi:10.1158/0008-5472.CAN-06-2030

    Article  CAS  PubMed  Google Scholar 

  27. Li W, Ling HP, You WC, Liu HD, Sun Q, Zhou ML, Shen W, Zhao JB, Zhu L, Hang CH (2014) Elevated cerebral cortical CD24 levels in patients and mice with traumatic brain injury: a potential negative role in nuclear factor kappa b/inflammatory factor pathway. Mol Neurobiol 49(1):187–198. doi:10.1007/s12035-013-8509-4

    Article  CAS  PubMed  Google Scholar 

  28. Lieberoth A, Splittstoesser F, Katagihallimath N, Jakovcevski I, Loers G, Ranscht B, Karagogeos D, Schachner M, Kleene R (2009) Lewis(x) and alpha2,3-sialyl glycans and their receptors TAG-1, Contactin, and L1 mediate CD24-dependent neurite outgrowth. J Neurosci 29(20):6677–6690. doi:10.1523/JNEUROSCI.4361-08.2009

    Article  CAS  PubMed  Google Scholar 

  29. Lo HW, Zhu H, Cao X, Aldrich A, Ali-Osman F (2009) A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res 69(17):6790–6798. doi:10.1158/0008-5472.CAN-09-0886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Milde T, Hielscher T, Witt H, Kool M, Mack SC, Deubzer HE, Oehme I, Lodrini M, Benner A, Taylor MD, von Deimling A, Kulozik AE, Pfister SM, Witt O, Korshunov A (2012) Nestin expression identifies ependymoma patients with poor outcome. Brain Pathol 22(6):848–860. doi:10.1111/j.1750-3639.2012.00600.x

    Article  PubMed  Google Scholar 

  31. Morrison LC, McClelland R, Aiken C, Bridges M, Liang L, Wang X, Di Curzio D, Del Bigio MR, Taylor MD, Werbowetski-Ogilvie TE (2013) Deconstruction of medulloblastoma cellular heterogeneity reveals differences between the most highly invasive and self-renewing phenotypes. Neoplasia 15(4):384–398

    Article  PubMed Central  PubMed  Google Scholar 

  32. Nieoullon V, Belvindrah R, Rougon G, Chazal G (2005) mCD24 regulates proliferation of neuronal committed precursors in the subventricular zone. Mol Cell Neurosci 28(3):462–474. doi:10.1016/j.mcn.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  33. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, Rutka JT, Pfister S, Taylor MD (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414. doi:10.1200/JCO.2009.27.4324

    Article  PubMed  Google Scholar 

  34. Ohl C, Albach C, Altevogt P, Schmitz B (2003) N-glycosylation patterns of HSA/CD24 from different cell lines and brain homogenates: a comparison. Biochimie 85(6):565–573

    Article  CAS  PubMed  Google Scholar 

  35. Pfenninger CV, Steinhoff C, Hertwig F, Nuber UA (2011) Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression. Glia 59(1):68–81. doi:10.1002/glia.21077

    Article  PubMed  Google Scholar 

  36. Poncet C, Frances V, Gristina R, Scheiner C, Pellissier JF, Figarella-Branger D (1996) CD24, a glycosylphosphatidylinositol-anchored molecules is transiently expressed during the development of human central nervous system and is a marker of human neural cell lineage tumors. Acta Neuropathol 91(4):400–408

    Article  CAS  PubMed  Google Scholar 

  37. Pruszak J, Ludwig W, Blak A, Alavian K, Isacson O (2009) CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells 27(12):2928–2940. doi:10.1002/stem.211

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, Phoenix TN, Hedlund E, Wei L, Zhu X, Chalhoub N, Baker SJ, Huether R, Kriwacki R, Curley N, Thiruvenkatam R, Wang J, Wu G, Rusch M, Hong X, Becksfort J, Gupta P, Ma J, Easton J, Vadodaria B, Onar-Thomas A, Lin T, Li S, Pounds S, Paugh S, Zhao D, Kawauchi D, Roussel MF, Finkelstein D, Ellison DW, Lau CC, Bouffet E, Hassall T, Gururangan S, Cohn R, Fulton RS, Fulton LL, Dooling DJ, Ochoa K, Gajjar A, Mardis ER, Wilson RK, Downing JR, Zhang J, Gilbertson RJ (2012) Novel mutations target distinct subgroups of medulloblastoma. Nature 488(7409):43–48. doi:10.1038/nature11213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC, Zlotnik A (2006) Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7(2):67–80. doi:10.1007/s10048-006-0032-6

    Article  CAS  PubMed  Google Scholar 

  40. Senner V, Sturm A, Baur I, Schrell UH, Distel L, Paulus W (1999) CD24 promotes invasion of glioma cells in vivo. J Neuropathol Exp Neurol 58(8):795–802

    Article  CAS  PubMed  Google Scholar 

  41. Shewan D, Calaora V, Nielsen P, Cohen J, Rougon G, Moreau H (1996) mCD24, a glycoprotein transiently expressed by neurons, is an inhibitor of neurite outgrowth. J Neurosci 16(8):2624–2634

    CAS  PubMed  Google Scholar 

  42. Stuelten CH, Mertins SD, Busch JI, Gowens M, Scudiero DA, Burkett MW, Hite KM, Alley M, Hollingshead M, Shoemaker RH, Niederhuber JE (2010) Complex display of putative tumor stem cell markers in the NCI60 tumor cell line panel. Stem Cells 28(4):649–660. doi:10.1002/stem.324

    Article  CAS  PubMed  Google Scholar 

  43. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tonjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu XY, Fontebasso AM, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann MU, van Meter T, Fruhwald MC, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Durken M, Kulozik AE, Madden J, Donson A, Foreman NK, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm CM, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth AM, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski PP, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor MD, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister SM (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437. doi:10.1016/j.ccr.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  44. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, Rosenblum M, Mikkelsen T, Fine HA (2006) Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9(4):287–300. doi:10.1016/j.ccr.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  45. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, Benner A, Hielscher T, Milde T, Remke M, Jones DT, Northcott PA, Garzia L, Bertrand KC, Wittmann A, Yao Y, Roberts SS, Massimi L, Van Meter T, Weiss WA, Gupta N, Grajkowska W, Lach B, Cho YJ, von Deimling A, Kulozik AE, Witt O, Bader GD, Hawkins CE, Tabori U, Guha A, Rutka JT, Lichter P, Korshunov A, Taylor MD, Pfister SM (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20(2):143–157. doi:10.1016/j.ccr.2011.07.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Yang XR, Xu Y, Yu B, Zhou J, Li JC, Qiu SJ, Shi YH, Wang XY, Dai Z, Shi GM, Wu B, Wu LM, Yang GH, Zhang BH, Qin WX, Fan J (2009) CD24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin Cancer Res 15(17):5518–5527. doi:10.1158/1078-0432.CCR-09-0151

    Article  CAS  PubMed  Google Scholar 

  47. Ye P, Simonian M, Nadkarni MA, Decarlo AA, Chapple CC, Hunter N (2005) Identification of epithelial auto-antigens associated with periodontal disease. Clin Exp Immunol 139(2):328–337. doi:10.1111/j.1365-2249.2005.02692.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Swedish Childhood Cancer Foundation, the Network for Neuroblastoma and CNS tumor research in children (NBCNS), the Skåne University Hospital donation funds, the Governmental funding of clinical research within the national health services (ALF), the Royal Physiographic Society in Lund, the Swedish Society of Medicine, the Crafoord Foundation and Jonasfonden. We thank Erika Bourseau-Guilman and Jonna Liljenberg for excellent technical support, and Charlotte Saltin for handling of tissue specimens during surgery.

Conflict of interest

All authors declare no conflict of interest.

Compliance with ethical standards

The Local Ethical Board of Lund University approved the collection and analyses of tumor samples at Lund University Hospital (LU1028-03, ETIK2008/642). All patients and/or their parents gave their informed consent prior to inclusion in the study. All animal experiments were approved by the regional ethics committee for animal research (N137/10), appointed and under the control of the Swedish Board of Agriculture and the Swedish Court. The animal experiments presented herein were in accordance with national regulations (SFS 1988:534, SFS 1988:539, and SFS 1988:541).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Sandén.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandén, E., Dyberg, C., Krona, C. et al. Aberrant immunostaining pattern of the CD24 glycoprotein in clinical samples and experimental models of pediatric medulloblastomas. J Neurooncol 123, 1–13 (2015). https://doi.org/10.1007/s11060-015-1758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1758-5

Keywords

Navigation