Skip to main content

Advertisement

Log in

Mechanisms involved in kinin-induced glioma cells proliferation: the role of ERK1/2 and PI3K/Akt pathways

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Gliomas are the most common malignant brain tumors in adults. Bradykinin (BK) displays an important role in cancer, although the exact role of kinin receptors in the glioma biology remains unclear. This study investigated the role of kinin B1 and B2 receptors (B1R and B2R) on cell proliferation in human glioblastoma cell lineages. The mRNA expression of B1R and B2R was verified by RT-qPCR, whereas the effects of kinin agonists (des-Arg9-BK and BK) were analyzed by cell counting, MTT assay and annexin-V/PI determination. The PI3K/Akt and ERK1/2 signaling activation was assessed by flow cytometry. Our results demonstrated that both human glioblastoma cell lines U-138MG and U-251MG express functional B1R and B2R. The proliferative effects induced by the incubation of des-Arg9-BK and BK are likely related to the activation of PI3K/Akt and ERK 1/2 pathways. Moreover, the pre-incubation of the selective PI3Kγ blocker AS252424 markedly prevented kinin-induced AKT phosphorylation. Noteworthy, the selective B1R and B2R antagonists SSR240612 and HOE-140 were able to induce cell death of either lineages, with mixed apoptosis/necrosis characteristics. Taken together, the present results show that activation of B1R and B2R might contribute to glioblastoma progression in vitro. Furthermore, PI3K/Akt and ERK 1/2 signaling may be a target for adjuvant treatment of glioblastoma with a possible impact on tumor proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chandana SR, Movva S, Arora M, Singh T (2008) Primary brain tumors in adults. Am Fam Physician 77:1423–1430

    PubMed  Google Scholar 

  2. Cote J, Bovenzi V, Savard M, Dubuc C, Fortier A, Neugebauer W, Tremblay L, Muller-Esterl W, Tsanaclis AM, Lepage M, Fortin D, Gobeil F Jr (2012) Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS ONE 7:e37485. doi:10.1371/journal.pone.0037485

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL (2007) Epidemiology of brain tumors. Neurol Clin 25:867–890. doi:10.1016/j.ncl.2007.07.002 Vii

    Article  PubMed  Google Scholar 

  4. Marceau F, Regoli D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3:845–852. doi:10.1038/nrd1522

    Article  PubMed  CAS  Google Scholar 

  5. Montana V, Sontheimer H (2011) Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci 31:4858–4867. doi:10.1523/JNEUROSCI.3825-10.2011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Lu DY, Leung YM, Huang SM, Wong KL (2010) Bradykinin-induced cell migration and COX-2 production mediated by the bradykinin B1 receptor in glioma cells. J Cell Biochem 110:141–150. doi:10.1002/jcb.22520

    Article  PubMed  CAS  Google Scholar 

  7. Hall JM (1992) Bradykinin receptors: pharmacological properties and biological roles. Pharmacol Ther 56:131–190

    Article  PubMed  CAS  Google Scholar 

  8. Campos MM, Leal PC, Yunes RA, Calixto JB (2006) Non-peptide antagonists for kinin B1 receptors: new insights into their therapeutic potential for the management of inflammation and pain. Trends Pharmacol Sci 27:646–651. doi:10.1016/j.tips.2006.10.007

    Article  PubMed  CAS  Google Scholar 

  9. Hsieh HL, Wu CY, Yang CM (2008) Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-delta-dependent ERK/Elk-1 pathway in astrocytes. Glia 56:619–632. doi:10.1002/glia.20637

    Article  PubMed  Google Scholar 

  10. Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, Merrino VF, Kita S, Iwamoto T, Komuro I, Wang B, Cheung G, Ishikawa E, Ooboshi H, Bader M, Wada K, Kettenmann H, Noda M (2007) Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci 27:13065–13073. doi:10.1523/JNEUROSCI.3467-07.2007

    Article  PubMed  CAS  Google Scholar 

  11. Cardoso RC, Lobao-Soares B, Bianchin MM, Carlotti CG Jr, Walz R, Alvarez-Silva M, Trentin AG, Nicolau M (2004) Enhancement of blood-tumor barrier permeability by Sar-[D-Phe8]des-Arg9BK, a metabolically resistant bradykinin B1 agonist, in a rat C6 glioma model. BMC Neurosci 5:38. doi:10.1186/1471-2202-5-38

    Article  PubMed  PubMed Central  Google Scholar 

  12. Borlongan CV, Emerich DF (2003) Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Res Bull 60:297–306

    Article  PubMed  CAS  Google Scholar 

  13. Zhao Y, Xue Y, Liu Y, Fu W, Jiang N, An P, Wang P, Yang Z, Wang Y (2005) Study of correlation between expression of bradykinin B2 receptor and pathological grade in human gliomas. Br J Neurosurg 19:322–326. doi:10.1080/02688690500305555

    Article  PubMed  Google Scholar 

  14. Watkins S, Sontheimer H (2012) Unique biology of gliomas: challenges and opportunities. Trends Neurosci 35:546–556. doi:10.1016/j.tins.2012.05.001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Wen PY, Lee EQ, Reardon DA, Ligon KL, Yung WKA (2012) Current clinical development of PI3K pathway inhibitors in glioblastoma. Neuro Oncol 14:819–829. doi:10.1093/neuonc/nos117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Fan QW, Weiss WA (2012) Inhibition of PI3K-Akt-mTOR signaling in glioblastoma by mTORC1/2 inhibitors. Methods Mol Biol 821:349–359. doi:10.1007/978-1-61779-430-8_22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Gehring MP, Pereira TC, Zanin RF, Borges MC, Filho AB, Battastini AM, Bogo MR, Lenz G, Campos MM, Morrone FB (2012) P2X7 receptor activation leads to increased cell death in a radiosensitive human glioma cell line. Purinergic Signal. doi:10.1007/s11302-012-9319-2

    PubMed  PubMed Central  Google Scholar 

  18. Molina L, Matus CE, Astroza A, Pavicic F, Tapia E, Toledo C, Perez JA, Nualart F, Gonzalez CB, Burgos RA, Figueroa CD, Ehrenfeld P, Poblete MT (2009) Stimulation of the bradykinin B(1) receptor induces the proliferation of estrogen-sensitive breast cancer cells and activates the ERK1/2 signaling pathway. Breast Cancer Res Treat 118:499–510. doi:10.1007/s10549-009-0314-4

    Article  PubMed  CAS  Google Scholar 

  19. Andoh T, Akira A, Saiki I, Kuraishi Y (2010) Bradykinin increases the secretion and expression of endothelin-1 through kinin B2 receptors in melanoma cells. Peptides 31:238–241. doi:10.1016/j.peptides.2009.12.003

    Article  PubMed  CAS  Google Scholar 

  20. Sgnaolin V, Pereira TC, Bogo MR, Zanin R, Battastini AM, Morrone FB, Campos MM (2012) Functional and molecular characterization of kinin B(1) and B (2) receptors in human bladder cancer: implication of the PI3Kgamma pathway. Invest New Drugs. doi:10.1007/s10637-012-9907-6

    PubMed  Google Scholar 

  21. Wang YB, Peng C, Liu YH (2007) Low dose of bradykinin selectively increases intracellular calcium in glioma cells. J Neurol Sci 258:44–51. doi:10.1016/j.jns.2007.02.031

    Article  PubMed  CAS  Google Scholar 

  22. Calixto JB, Cabrini DA, Ferreira J, Campos MM (2000) Kinins in pain and inflammation. Pain 87:1–5

    Article  PubMed  CAS  Google Scholar 

  23. Figueroa CD, Ehrenfeld P, Bhoola KD (2012) Kinin receptors as targets for cancer therapy. Expert Opin Ther Targets 16:299–312. doi:10.1517/14728222.2012.662957

    Article  PubMed  CAS  Google Scholar 

  24. Yang WH, Chang JT, Hsu SF, Li TM, Cho DY, Huang CY, Fong YC, Tang CH (2010) Bradykinin enhances cell migration in human chondrosarcoma cells through BK receptor signaling pathways. J Cell Biochem 109:82–92. doi:10.1002/jcb.22383

    PubMed  CAS  Google Scholar 

  25. Guevara-Lora I, Blonska B, Faussner A, Kozik A (2013) Kinin-generating cellular model obtained from human glioblastoma cell line U-373. Acta Biochim Pol 60:299–305

    PubMed  CAS  Google Scholar 

  26. Minelli R, Cavalli R, Ellis L, Pettazzoni P, Trotta F, Ciamporcero E, Barrera G, Fantozzi R, Dianzani C, Pili R (2012) Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur J Pharm Sci. doi:10.1016/j.ejps.2012.08.003

    PubMed  Google Scholar 

  27. Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CF, Kaina B (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26:186–197. doi:10.1038/sj.onc.1209785

    Article  PubMed  CAS  Google Scholar 

  28. Bota DA, Alexandru D, Keir ST, Bigner D, Vredenburgh J, Friedman HS (2013) Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells’ VEGF production and angiogenesis. J Neurosurg 119:1415–1423. doi:10.3171/2013.7.JNS1323

    Article  PubMed  Google Scholar 

  29. Pomel V, Klicic J, Covini D, Church DD, Shaw JP, Roulin K, Burgat-Charvillon F, Valognes D, Camps M, Chabert C, Gillieron C, Francon B, Perrin D, Leroy D, Gretener D, Nichols A, Vitte PA, Carboni S, Rommel C, Schwarz MK, Ruckle T (2006) Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma. J Med Chem 49:3857–3871. doi:10.1021/jm0601598

    Article  PubMed  CAS  Google Scholar 

  30. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. doi:10.1056/NEJMra0708126

    Article  PubMed  CAS  Google Scholar 

  31. Lopez-Gines C, Gil-Benso R, Benito R, Mata M, Pereda J, Sastre J, Roldan P, Gonzalez-Darder J, Cerda-Nicolas M (2008) The activation of ERK1/2 MAP kinases in glioblastoma pathobiology and its relationship with EGFR amplification. Neuropathology 28:507–515. doi:10.1111/j.1440-1789.2008.00911.x

    Article  PubMed  Google Scholar 

  32. Meloche S, Pouyssegur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26:3227–3239. doi:10.1038/sj.onc.1210414

    Article  PubMed  CAS  Google Scholar 

  33. Greco S, Muscella A, Elia MG, Romano S, Storelli C, Marsigliante S (2004) Mitogenic signalling by B2 bradykinin receptor in epithelial breast cells. J Cell Physiol 201:84–96. doi:10.1002/jcp.20052

    Article  PubMed  CAS  Google Scholar 

  34. Iyoda K, Sasaki Y, Horimoto M, Toyama T, Yakushijin T, Sakakibara M, Takehara T, Fujimoto J, Hori M, Wands JR, Hayashi N (2003) Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 97:3017–3026. doi:10.1002/cncr.11425

    Article  PubMed  CAS  Google Scholar 

  35. Lin JC, Chang SY, Hsieh DS, Lee CF, Yu DS (2005) Modulation of mitogen-activated protein kinase cascades by differentiation-1 protein: acquired drug resistance of hormone independent prostate cancer cells. J Urol 174:2022–2026

    Article  PubMed  CAS  Google Scholar 

  36. da Costa PL, Sirois P, Tannock IF, Chammas R (2014) The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett 345:27–38. doi:10.1016/j.canlet.2013.12.009

    Article  PubMed  Google Scholar 

  37. Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57:27–77. doi:10.1124/pr.57.1.2

    Article  PubMed  CAS  Google Scholar 

  38. Morissette G, Houle S, Gera L, Stewart JM, Marceau F (2007) Antagonist, partial agonist and antiproliferative actions of B-9870 (CU201) as a function of the expression and density of the bradykinin B1 and B2 receptors. Br J Pharmacol 150:369–379. doi:10.1038/sj.bjp.0706982

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Prados MD, Schold SJS, Fine HA, Jaeckle K, Hochberg F, Mechtler L, Fetell MR, Phuphanich S, Feun L, Janus TJ, Ford K, Graney W (2003) A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro Oncol 5:96–103

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Warren K, Jakacki R, Widemann B, Aikin A, Libucha M, Packer R, Vezina G, Reaman G, Shaw D, Krailo M, Osborne C, Cehelsky J, Caldwell D, Stanwood J, Steinberg SM, Balis FM (2006) Phase II trial of intravenous lobradimil and carboplatin in childhood brain tumors: a report from the Children’s Oncology Group. Cancer Chemother Pharmacol 58:343–347. doi:10.1007/s00280-005-0172-7

    Article  PubMed  CAS  Google Scholar 

  41. Charignon D, Spath P, Martin L, Drouet C (2012) Icatibant, the bradykinin B2 receptor antagonist with target to the interconnected kinin systems. Expert Opin Pharmacother 13:2233–2247. doi:10.1517/14656566.2012.723692

    Article  PubMed  CAS  Google Scholar 

  42. Balaguer JM, Yu C, Byrne JG, Ball SK, Petracek MR, Brown NJ, Pretorius M (2013) Contribution of endogenous bradykinin to fibrinolysis, inflammation, and blood product transfusion following cardiac surgery: a randomized clinical trial. Clin Pharmacol Ther 93:326–334. doi:10.1038/clpt.2012.249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Ana Maria Battastini, from Federal University of Rio Grande do Sul (Brazil), for donating both tested cell lines.

Conflict of interest

The authors declare that they have no conflict of interest.

Financial support

This study was Supported by the FINEP research grant “Implantação, Modernização e Qualificação de Estrutura de Pesquisa da PUCRS” (PUCRSINFRA) # 01.11.0014-00, CNPq, CAPES and FAPERGS. NFN is a PhD student in Cellular and Molecular Biology receiving a grant from CAPES/Edital 63/Toxinologia and PROBOLSAS/PUCRS; TCE is an undergraduate student in Pharmacy supported by PIBITI/CNPq and BPA/PUCRS; RFZ is a post-doc fellow supported by PNPD/CAPES; TBP is a PhD student receiving grants from CAPES/PROEX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Bueno Morrone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicoletti, N.F., Erig, T.C., Zanin, R.F. et al. Mechanisms involved in kinin-induced glioma cells proliferation: the role of ERK1/2 and PI3K/Akt pathways. J Neurooncol 120, 235–244 (2014). https://doi.org/10.1007/s11060-014-1549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1549-4

Keywords

Navigation