Skip to main content

Advertisement

Log in

The use of biological liquid fertilizers against oak decline associated with Phytophthora spp.

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Worldwide, multiple ecosystems are currently affected by global change because of important anthropogenic disturbances which have quickly increased levels of abiotic (e.g. climate) and biotic stress (e.g. diseases, pests, herbivory). In particular, oak-dominated systems have experienced a general decline as a consequence of habitat destruction, mismanagement and extreme climate events along with the aggressive root pathogen Phytophthora spp. Here, we investigated the effect of soil improvement through soil biological fertilizers on oak defense against tree decline symptoms associated with Phytophthora for two ontogenetic stages of oak trees: adults and recruits. We examined oak survival and crown defoliation status on 60 pairs of adult trees (a treated tree with biological fertilizers vs. non-treated tree) as well as the survival, growth and herbivory on 30 quartets of treated and non-treated recruits, with and without protection against large herbivores. We used two different liquid fertilizers: OptiPlus (a biological fertilizer with organic N, P, S, Ca, Mg, trace elements (Fe, Mn, B, Zn) and humic fulvic acids) and OptiFer (a biological trace element fertilizer with only Fe, Mn and Mg). Treated oak trees with fertilizers showed lower oak defoliation (0.33-fold difference) than non-treated trees. In addition, trees treated with OptiPlus liquid showed a significant reduction of crown defoliation compared to those trees that received OptiFer treatment (0.68-fold difference). Interestingly, this crown amelioration was more effective in steep slopes, revealing that OptiPlus may buffer the stress generated by shallower and poorer soils. Overall, fertilized plants (particularly OptiPlus) were more attractive to herbivores, probably as a result of the greater content in deficient minerals, increasing their palatability. This study has slightly visualized the importance of soil improvement against oak decline through biological fertilizers and the need to further explore different times and techniques of application. Managers should be cautious with the use of fertilizers as they may increase the browsing impact of livestock and wild herbivores on tree regeneration. It is therefore imperative to improve the resilience of oak trees against oak decline while minimizing the herbivory impact on oak recruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ (2010) Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 60:886–897

    Google Scholar 

  • Barton K (2015) MuMIn: multi-model inference. R Package Version 1(15):1

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region, vol Book. Oxford University Press, Oxford

    Google Scholar 

  • Blossey B, Curtis P, Boulanger J, Dávalos A (2019) Red oak seedlings as indicators of deer browse pressure: Gauging the outcome of different white-tailed deer management approaches. Ecol Evolut 9:13085–13103

    Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B (Methodol) 26:211–252

    Google Scholar 

  • Branco M, Ramos AP (2012) Coping with pests and diseases. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge: ecology, adaptive management, and restoration. Island Press, Washington, pp 103–113

    Google Scholar 

  • Brasier CM (1993) Phytophthora cinnamomi as a contributory factor in European oak declines. In: Luisi N, Lerario P, Vannini AB (eds) Recent advances in studies on Oak Decline. Proc. Int. Cong. Selva di Fasano. Tipolitografia-Putignano, Putignano, Italy, pp 49–57

  • Brasier C, Robredo F, Ferraz J (1993a) Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathol 42:140–145

    Google Scholar 

  • Brasier CM, Moreira AC, Ferraz JFP, Kirk S (1993b) High mortality of cork oak in Portugal associated with Phytophthora cinnamomi. In: Luisi N, Lerario P, Vannini AB (eds) Recent advances in studies on oak decline. Proc. Int. Cong., Selva di Fasano. Tipolitografia-Putignano, Putignano, Italy, pp 461–462

  • Broadbent P, Baker KF (1974) Behaviour of Phytophthora cinnamomi in soils suppressive and conducive to root rot. Aust J Agric Res 25:121–137

    Google Scholar 

  • Bugalho MN, Milne JA (2003) The composition of the diet of red deer (Cervus elaphus) in a Mediterranean environment: a case of summer nutritional constraint? For Ecol Manag 181:23–29

    Google Scholar 

  • Burney OT, Jacobs DF (2013) Ungulate herbivory of boreal and temperate forest regeneration in relation to seedling mineral nutrition and secondary metabolites. New For 44:753–768

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Campos P, Huntsinger L, Oviedo JL, Starrs PF, Díaz M, Standiford RB, Montero G (2013) Mediterranean oak woodland working landscapes. Landscape Series 16

  • Caparrós A, Huntsinger L, Oviedo JL, Plieninger T, Campos P (2013) Economics of ecosystem services. In: Campos P et al (eds) Mediterranean oak woodland working landscapes. Springer, Dordrecht, pp 353–388

    Google Scholar 

  • Carmona CP, Azcárate FM, Oteros-Rozas E, González JA, Peco B (2013) Assessing the effects of seasonal grazing on holm oak regeneration: implications for the conservation of Mediterranean dehesas. Biol Conserv 159:240–247. https://doi.org/10.1016/j.biocon.2012.11.015

    Article  Google Scholar 

  • Charro JL, López-Sánchez A, Perea R (2018) Traditional cattle vs. introduced deer management in Chaco Serrano woodlands (Argentina): analysis of environmental sustainability at increasing densities. J Environ Manag 206:642–649

    Google Scholar 

  • Collins M et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1029–1136

  • Côté SD, Beguin J, de Bellefeuille S, Champagne E, Thiffault N, Tremblay J-P (2014) Structuring effects of deer in boreal forest ecosystems. Adv Ecol 2014

  • Dagit R, Carlberg C, Cuba C, Scott T (2015) Economic incentives for oak woodland preservation and conservation. In: Standiford RB, Purcell KL (eds) Proceedings of the seventh California oak symposium: managing oak woodlands in a dynamic world. Gen. Tech. Rep. PSW-GTR-251. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Berkeley, CA, pp 457–469

  • de Sampaio e Paiva Camilo-Alves C, da Clara MIE, de Almeida Ribeiro NMC (2013) Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur J Forest Res 132:411–432

    Google Scholar 

  • Dunne C, Dell B, Hardy GSJ (2003) Biofumigants suppress the growth, sporulation and survival of Phytophthora cinnamomi

  • Duque-Lazo J, Navarro-Cerrillo RM, Van Gils H, Groen TA (2018) Forecasting oak decline caused by Phytophthora cinnamomi in Andalusia: identification of priority areas for intervention. For Ecol Manag 417:122–136

    Google Scholar 

  • Duvenhage J, Kotzé J, Maas EM (1992) The influence of nitrogen and calcium on mycelial growth and disease severity of Phytophthora cinnamomi and the effect of calcium on resistance of avocado to root rot. S Afr Avocado Growers’ Assoc Yearb 15:12–14

    Google Scholar 

  • Ellison AM et al (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486. https://doi.org/10.1890/1540-9295(2005)003%5b0479:lofscf%5d2.0.co;2

    Article  Google Scholar 

  • Fernández P, Carbonero M, Sánchez M, Trapero A (2008) ¿Cómo manejar las explotaciones afectadas por decaimiento forestal? Europa Cork 36:40–46

    Google Scholar 

  • Fernández-Olalla M, Martínez-Jauregui M, Perea R, Velamazán M, San Miguel A (2016) Threat or opportunity? Browsing preferences and potential impact of Ammotragus lervia on woody plants of a Mediterranean protected area. J Arid Environ 129:9–15

    Google Scholar 

  • Fernández-Rebollo P, Sánchez-Hernández M, Serrano-Moral M, García-Moreno A, Carbonero-Muñoz M (2009) La podredumbre radical de encinas y alcornoques en la dehesa

  • Ferrini F, Nicese F (2002) Response of English oak (Quercus robur L.) trees to biostimulants application in the urban environment. J Arboric 28:70–75

    Google Scholar 

  • Fox J, Weisberg S (2011) An R Companion to Applied Regression. Sage, Thousand Oaks

    Google Scholar 

  • Gambín P, Ceacero F, Garcia AJ, Landete-Castillejos T, Gallego L (2017) Patterns of antler consumption reveal osteophagia as a natural mineral resource in key periods for red deer (Cervus elaphus). Eur J Wildl Res 63:39

    Google Scholar 

  • Gentilesca T, Camarero JJ, Colangelo M, Nole A, Ripullone F (2017) Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iFor Biogeosci For 10:796

    Google Scholar 

  • Gordon IJ, Hester AJ, Festa-Bianchet M (2004) The management of wild large herbivores to meet economic, conservation and environmental objectives. J Appl Ecol 41:1021–1031

    Google Scholar 

  • Haavik LJ, Billings SA, Guldin JM, Stephen FM (2015) Emergent insects, pathogens and drought shape changing patterns in oak decline in North America and Europe. For Ecol Manag 354:190–205. https://doi.org/10.1016/j.foreco.2015.06.019

    Article  Google Scholar 

  • Hansen EM (2015) Phytophthora species emerging as pathogens of forest trees. Curr For Rep 1:16–24. https://doi.org/10.1007/s40725-015-0007-7

    Article  Google Scholar 

  • Heyman F, Lindahl B, Persson L, Wikström M, Stenlid J (2007) Calcium concentrations of soil affect suppressiveness against Aphanomyces root rot of pea. Soil Biol Biochem 39:2222–2229

    CAS  Google Scholar 

  • Journée d’infomation sur la Réserve de Biosphère des Oasis de Sud Marocain. In: Journée d’infomation sur la Réserve de Biosphère des Oasis de Sud Marocain, 2007

  • IPCC (2007) Climate change 2007: synthesis report. An assessment of the intergovernmental panel on climate change. IPCC, Cambridge

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland

  • Johnstone JF et al (2016) Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14:369–378

    Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system nature. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Jung T, Blaschke H, Oßwald W (2000) Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathol 49:706–718

    Google Scholar 

  • Jung T, Pérez-Sierra A, Durán A, Jung MH, Balci Y, Scanu B (2018) Canker and decline diseases caused by soil-and airborne Phytophthora species in forests and woodlands. Persoonia Mol Phylogeny Evol Fungi 40:182

    CAS  Google Scholar 

  • Kelting MP (1997) Effects of soil amendments and biostimulants on the post-transplant growth of landscape trees. Virginia Tech

  • Kelting M, Harris JR, Fanelli J, Appleton B (1998) Humate-based biostimulants affect early post-transplant root growth and sapflow of balled and burlapped red maple. HortScience 33:342–344

    Google Scholar 

  • Kochenderfer JN, Ford WM (2008) Utility of wire cages, tree shelters, and repellants to minimize herbivory to oak by white-tailed deer Res Pap NRS-5 Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station 8 p 5

  • Kozlowski T (1999) Soil compaction and growth of woody plants. Scand J For Res 14:596–619

    Google Scholar 

  • López-Sánchez A (2015) Balancing management and preservation of Mediterranean scattered oak woodlands (dehesas) in human-dominated landscapes. Universidad Politécnica de Madrid (Spain)

  • López-Sánchez A, Schroeder J, Roig S, Sobral M, Dirzo R (2014) Effects of cattle management on oak regeneration in northern Californian Mediterranean oak woodlands. PLoS ONE 9:e105472. https://doi.org/10.1371/journal.pone.0105472

    Article  CAS  PubMed  Google Scholar 

  • López-Sánchez A, Perea R, Dirzo R, Roig S (2016) Livestock vs. wild ungulate management in the conservation of Mediterranean Dehesas: implications for oak regeneration. For Ecol Manag 362:99–106. https://doi.org/10.1016/j.foreco.2015.12.002

    Article  Google Scholar 

  • López-Sánchez A, Dirzo R, Roig S (2017) Changes in livestock footprint and tree layer coverage in Mediterranean dehesas: a six-decade study based on remote sensing. Int J Remote Sens 39:4727–4743

    Google Scholar 

  • López-Sánchez A, Peláez M, Dirzo R, Fernandes GW, Seminatore M, Perea R (2019) Spatio-temporal variation of biotic and abiotic stress agents determines seedling survival in assisted oak regeneration. J Appl Ecol 00:1–12

    Google Scholar 

  • Lutz JA, Van Wagtendonk JW, Franklin JF (2010) Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. J Biogeogr 37:936–950

    Google Scholar 

  • Metz MR, Varner JM, Simler AB, Frangioso KM, Rizzo DM (2017) Implications of sudden oak death for wildland fire management. For Phytophthoras 7:30–44

    Google Scholar 

  • Miranda M, Díaz L, Sicilia M, Cristóbal I, Cassinello J (2011) Seasonality and edge effect determine herbivory risk according to different plant association models. Plant Biol 13:160–168

    CAS  PubMed  Google Scholar 

  • Møller AP, Shykoff JA (1999) Morphological developmental stability in plants: patterns and causes. Int J Plant Sci 160:S135–S146

    PubMed  Google Scholar 

  • Müller E, Stierlin HR (1990) Sanasilva: Kronenbilder: mit Nadel-und Blattverlustprozenten. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf, Switzerland

  • Navarro RM, Ariza D, Porras C, Jorge I, Jorrín J (2009) Evaluación de la resistencia aparente de individuos de encina a Phytophthora cinnamomi Rands. Boletín de sanidad vegetal Plagas 35:89–97

    Google Scholar 

  • Nikbakht A, Kafi M, Babalar M, Xia YP, Luo A, Etemadi N-A (2008) Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. J Plant Nutr 31:2155–2167

    CAS  Google Scholar 

  • Nolte DL (2003) Managing ungulates to protect trees USDA National Wildlife Research Center-Staff Publications 261

  • Nolte DL, Dykzeul M (2000) Wildlife impacts on forest resources. Human conflicts with wildlife: economic considerations 20

  • Oh JH, Jones MB, Longhurst WM, Connolly GE (1970) Deer browsing and rumen microbial fermentation of Douglas-fir as affected by fertilization and growth stage. For Sci 16:21–27

    CAS  Google Scholar 

  • Peñuelas J et al (2004) Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north–south European gradient. Ecosystems 7:598–612

    Google Scholar 

  • Perea R, Gil L (2014) Shrubs facilitating seedling performance in ungulate-dominated systems: biotic versus abiotic mechanisms of plant facilitation. Eur J For Res 133:525–534

    Google Scholar 

  • Perea R, Girardello M, San Miguel A (2014) Big game or big loss? High deer densities are threatening woody plant diversity and vegetation dynamics. Biodivers Conserv 23:1303–1318

    Google Scholar 

  • Perea R, Perea-García-Calvo R, Díaz-Ambrona CG, San Miguel A (2015) The reintroduction of a flagship ungulate Capra pyrenaica: assessing sustainability by surveying woody vegetation. Biol Conserv 181:9–17

    Google Scholar 

  • Perea R, López-Sánchez A, Roig S (2016) The use of shrub cover to preserve Mediterranean oak dehesas: a comparison between sheep, cattle and wild ungulate management. Appl Veg Sci 19:244–253

    Google Scholar 

  • Perea R, López-Sánchez A, Pallarés J, Gordaliza GG, González-Doncel I, Gil L, Rodríguez-Calcerrada J (2020) Tree recruitment in a drought- and herbivory-stressed oak-beech forest: Implications for future species coexistence. For Ecol Manag 477:118489

    Google Scholar 

  • Plieninger T, Wilbrand C (2001) Land use, biodiversity conservation, and rural development in the dehesas of Cuatro Lugares. Spain Agrofor Syst 51:23–34

    Google Scholar 

  • Plieninger T, Pulido FJ, Konold W (2003) Effects of land-use history on size structure of holm oak stands in Spanish dehesas: implications for conservation and restoration. Environ Conserv 30:61–70

    Google Scholar 

  • Plieninger T, Schaich H, Kizos T (2011) Land-use legacies in the forest structure of silvopastoral oak woodlands in the Eastern Mediterranean. Reg Environ Change 11:603–615

    Google Scholar 

  • Provenza FD, Villalba JJ, Dziba L, Atwood SB, Banner RE (2003) Linking herbivore experience, varied diets, and plant biochemical diversity. Small Ruminant Res 49:257–274

    Google Scholar 

  • Pulido FJ, Díaz M (2005) Regeneration of a Mediterranean oak: a whole-cycle approach. Ecoscience 12:92–102

    Google Scholar 

  • Pulido FJ, Díaz M, de Trucios SJH (2001) Size structure and regeneration of Spanish holm oak Quercus ilex forests and dehesas: effects of agroforestry use on their long-term sustainability. For Ecol Manag 146:1–13

    Google Scholar 

  • R Development Core Team (2019) R: a language and enviroment for statistical computing, 3.6.0 edn. Foundation for Statistical Computing, Vienna, Austria

  • Ríos P, Obregón S, de Haro A, Fernández-Rebollo P, Serrano MS, Sánchez ME (2016) Effect of Brassica biofumigant amendments on different stages of the life cycle of Phytophthora cinnamomi. J Phytopathol 164:582–594

    Google Scholar 

  • Rivas-Martínez S, Fernández-González F, Loidi J, Lousã M, Penas A (2001) Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level vol 14. Itinera geobotanica,

  • Rizzo DM, Garbelotto M (2003) Sudden oak death: endangering California and Oregon forest ecosystems. Front Ecol Environ 1:197–204

    Google Scholar 

  • Rodríguez-Molina M, Torres-Vila L, Blanco-Santos A, Nunez EP, Torres-Álvarez E (2002) Viability of holm and cork oak seedlings from acorns sown in soils naturally infected with Phytophthora cinnamomi. For Pathol 32:365–372

    Google Scholar 

  • Ruiz-Gómez FJ, Navarro-Cerrillo RM, Pérez-de-Luque A, Oβwald W, Vannini A, Morales-Rodríguez C (2019) Assessment of functional and structural changes of soil fungal and oomycete communities in holm oak declined dehesas through metabarcoding analysis. Sci Rep 9:1–16

    Google Scholar 

  • San Miguel A, Perea R, Fernández-Olalla M (2010) Wild ungulates vs extensive livestock. Looking back to face the future. Opt Méditerr A 92:27–34

    Google Scholar 

  • Sánchez M, Caetano P, Ferraz J, Trapero A (2002) Phytophthora disease of Quercus ilex in south-western Spain. For Pathol 32:5–18

    Google Scholar 

  • Sapp M et al (2019) Site-specific distribution of oak rhizosphere-associated oomycetes revealed by cytochrome c oxidase subunit II metabarcoding. Ecol Evol 9:10567–10581

    PubMed  Google Scholar 

  • Serrano M, De Vita P, Carbonero M, Fernández F, Fernández-Rebollo P, Sánchez M (2012a) Susceptibility to Phytophthora cinnamomi of the commonest morphotypes of holm oak in southern Spain. For Pathol 42:345–347

    Google Scholar 

  • Serrano MS, De Vita P, Fernández-Rebollo P, Hernández MES (2012b) Calcium fertilizers induce soil suppressiveness to Phytophthora cinnamomi root rot of Quercus ilex. Eur J Plant Pathol 132:271–279

    CAS  Google Scholar 

  • Serrano MS, Ríos P, González M, Romero MÁ, Fernández P, Sánchez ME (2017) A review of integrated control of Phytophthora root rot in oak rangeland ecosystems IOBC-WPRS. Bulletin 127:139–146

    Google Scholar 

  • Swiecki TJ, Bernhardt EA (2006) A field guide to insects and diseases of California oaks Gen Tech Rep PSW-GTR-197 Albany, CA: Pacific Southwest Research Station, Forest Service, US Department of Agriculture 151 p 197

  • Tyler CM, Kuhn B, Davis FW (2006) Demography and recruitment limitations of three oak species in California. Q Rev Biol 81:127–152

    PubMed  Google Scholar 

  • Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the mediterranean biome. Divers Distrib 15:188–197

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, vol Book. Springer, Berlin

    Google Scholar 

  • White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progress in Botany, vol 62. Progress in Botany. Springer, Berlin, pp 399–450. https://doi.org/10.1007/978-3-642-56849-7_17

    Chapter  Google Scholar 

  • Yang C, Liang Y, Qiu D, Zeng H, Yuan J, Yang X (2018) Lignin metabolism involves Botrytis cinerea BcGs1-induced defense response in tomato. BMC Plant Biol 18:103

    PubMed  Google Scholar 

  • Zamora R, Gómez JM, Hódar JA, Castro J, Garcı́a D (2001) Effect of browsing by ungulates on sapling growth of Scots pine in a Mediterranean environment: consequences for forest regeneration. For Ecol Manag 144:33–42

    Google Scholar 

Download references

Acknowledgements

We thank Fundación Monte Mediterráneo for the financial support and all facilities to develop the study, especially Ernestine Lüdeke and Hans-Gerd Neglein. We thank Mariana Yuan Ribeiro, Lavinia de Lucchi, Juan de Dios, Johanna Thiede and all Erasmus students from Erasmus + KA1 mobility projects for their help with fieldwork. The project GLOBALFOR supported by UPM and Comunidad de Madrid (Convenio Plurianual for young researchers) also provided financial support.

Funding

Fundación Monte Mediterráneo and the project GLOBALFOR supported by UPM and Comunidad de Madrid (Convenio Plurianual for young researchers) provided financial support.

Author information

Authors and Affiliations

Authors

Contributions

ALS and RP conceived the ideas and designed the experiments; ALS and RP collected data; ALS analyzed the data; ALS led the writing of the manuscript and RP contributed significantly in the writing of the manuscript.

Corresponding author

Correspondence to Aida López-Sánchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 Photo by Ramón Perea (JPEG 3449 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Sánchez, A., Perea, R. The use of biological liquid fertilizers against oak decline associated with Phytophthora spp.. New Forests 52, 713–731 (2021). https://doi.org/10.1007/s11056-020-09818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-020-09818-x

Keywords

Navigation