Skip to main content

Advertisement

Log in

Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

The tropical Andes in Ecuador and Colombia are a biodiversity hotspot that has endured centuries of forest clearance and degradation. Forest restoration has been identified as a regional conservation priority; in recent decades, native species reforestation projects have proliferated, but little information exists on growth performance of commonly planted tree species in relation to site and soil nutrient status. This study analyzed growth of seven common native species (Alnus acuminata, Baccharis bogotensis, Cedrela montana, Myrica pubesens, Quercus humboltii, Sambucus nigra, Smallanthus pyramidalis) on 12 montane forest sites across the northern region of the tropical Andes. Andean alder (A. acuminata) was the most commonly planted species, and grows at a mean annual diameter increment (MAI-d) of 1.81 cm y−1 and a mean annual height increment (MAI-h) of 0.95 m y−1. S. pyramidalis, a short lived pioneer of the Asteraceae family, also exhibited fast growth rates of 1.64 cm MAI-d and 1.21 m MAI-h. Andean oak (Q. humboltii) was the second-most commonly planted species, growing with an MAI-d of 0.99 cm and MAI-h of 0.56 m. Soil magnesium and potassium were significant predictors of MAI-d and MAI-h for A. acuminata, while soil nitrogen, phosphorous, sodium, and calcium were negatively associated with growth (p < .001). We speculate that A. acuminata did not grow as well on soils richer in calcium and phosphorus because they were less conducive to nitrogen symbiosis common to this species. Soil magnesium and calcium were significant predictors (p < .05) of diameter growth for Q. humboltii. For both species, we attribute growth responses to soil nutrients as a result of the variable nature of fertility in the complex and variable soils that make up the volcanic and surficial geological landscape of the northern Andes. Results indicate that native species can grow in a variety of soil conditions, and exhibit growth rates comparable to non-native species. However, our results suggest native species are site restricted for best growth and should be planted on particular soils. We make recommendations for reforestation for the species in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguirre N, Weber, M (2007). Enriquecimiento de plantaciones forestales como herramienta para la rehabilitación de ambientes degradados en la región sur Ecuatoriana. Unpublished manuscript

  • Aide TM, Cavelier J (1994) Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta Colombia. Restor Ecol 2(4):219–229. doi:10.1111/j.1526-100X.1994.tb00054.x

    Article  Google Scholar 

  • Aide T, Grau H (2004) Globalization, migration, and Latin American ecosystems. Science 305(5692):1915–1916. doi:10.1126/science.1103179

    Article  PubMed  Google Scholar 

  • Aide TM, Clark ML, Grau HR, López-Carr D, Levy MA, Redo D, Bonilla-Moheno M, Riner G, Andrade-Nuñez M, Muñiz M (2013) Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45(2):262–271. doi:10.1111/j.1744-7429.2012.00908.x

    Article  Google Scholar 

  • Andrade-Perez A (ed) (2007) Applying the ecosystem approach in Latin America. IUCN, Switzerland

    Google Scholar 

  • Armenteras D, Gast F, Villareal H (2003) Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes Colombia. Biol Conserv 113(2):245–256. doi:10.1016/S0006-3207(02)00359-2

    Article  Google Scholar 

  • Ashton PMS, Gunatilleke CVS, Singhakumara BMP, Gunatilleke IAUN (2001) Restoration pathways for rain forest in southwest Sri Lanka: a review of concepts and models. For Ecol Manag 154:409–430. doi:10.1016/S0378-1127(01)00512-6

    Article  Google Scholar 

  • Asner GP, Rudel TK, Aide TM, Defries R, Emerson R (2009) A contemporary assessment of change in humid tropical forests. Conserv Biol 23(6):1386–1395. doi:10.1111/j.1523-1739.2009.01333.x

    Article  PubMed  Google Scholar 

  • Bakker J, Olivera MM, Hooghiemstra H (2008) Holocene environmental change at the upper forest line in northern Ecuador. Holocene 18(6):877–893. doi:10.1177/0959683608093525

    Article  Google Scholar 

  • Bare M (2014) Forest restoration in the tropical Andes: active conservation in a biodiversity Hotspot. Trop Res Bull Yale Trop Res Inst. 32–33:93–100

    Google Scholar 

  • Bautista-Cruz A, del Castillo RF (2005) Soil changes during secondary succession in a tropical montane cloud forest area. Soil Sci Soc Am J 69(3):906–914. doi:10.2136/sssaj2004.0130

    Article  CAS  Google Scholar 

  • Becerra JE (1989) Estructura y crecimiento de un bosque secundario de roble (Quercus humboldtii). Colombia Forestal (Colombia) 3(3):8–22

    Google Scholar 

  • Becerra A, Zak MR, Horton TR, Micolini J (2005) Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza 15(7):525–531. doi:10.1007/s00572-005-0360-7

    Article  PubMed  Google Scholar 

  • Blanco-García A, Sáenz-Romero C, Martorell C, Alvarado-Sosa P, Lindig-Cisneros R (2011) Nurse-plant and mulching effects on three conifer species in a Mexican temperate forest. Ecol Eng 37(6):994–998. doi:10.1016/j.ecoleng.2011.01.012

    Article  Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodiver Conserv 17(5):925–951. doi:10.1007/s10531-008-9380-x

    Article  Google Scholar 

  • Bussmann RW, Wilcke W, Richter M (2008) Landslides as important disturbance regimes—causes and regeneration. In: Beck E et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 319–330

    Chapter  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–1965

    Article  Google Scholar 

  • Calle A, Montagnini F, Zuluaga AF (2009) Farmers’ perceptions of silvopastoral system promotion in Quindío Colombia. Bois et forets des tropiques 300(2):79–94

    Google Scholar 

  • Calvo-Alvarado JC, Arias D, Richter DD (2007) Early growth performance of native and introduced fast growing tree species in wet to sub-humid climates of the Southern region of Costa Rica. For Ecol Manag 242(2):227–235. doi:10.1016/j.foreco.2007.01.034

    Article  Google Scholar 

  • Carpenter FL, Nichols JD, Sandi E (2004) Early growth of native and exotic trees planted on degraded tropical pasture. For Ecol Manag 196(2):367–378. doi:10.1016/j.foreco.2004.03.030

    Article  Google Scholar 

  • CESA-Intercooperation Suiza (1992) Programa de reforestación de áreas marginales de la sierra ecuatoriana. CESA-Intercooperation Suiza, Quito

    Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320(5882):1458–1460

    Article  CAS  PubMed  Google Scholar 

  • Colombia Censo General (2005). Departamento Administrativo Nacional de Estadística: Archivo de Datos. http://formularios.dane.gov.co/Anda_4_1/index.php/catalog/109 Accessed 26 April 2014

  • Conservation Internacional Colombia (2014). Conservation international http://conservation.org.co/ Accessed 6 Feb 2014

  • Cornelius J, Mesén F, Corea E, Henson M (1996) Variation in growth and form of Alnus acuminata Kunth. grown in Costa Rica. Silvae Genet 45(1):24–30

    Google Scholar 

  • David MB (1988) Use of loss-on-ignition to assess soil organic carbon in forest soils. Commun Soil Sci Plan 19(14):1593–1599

    Article  CAS  Google Scholar 

  • Davidson EA, Reis de Carvalho CJ, Vieira IC, Figueiredo RDO, Moutinho P, Yoko Ishida F, Tuma Sabá R (2004) Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol Appl 14(4):150–163. doi:10.1890/01-6006

    Article  Google Scholar 

  • de la Luz Avendaño-Yáñez M, Sánchez-Velásquez LR, Meave JA, del Rosario Pineda-López M (2015) Can Pinus plantations facilitate reintroduction of endangered cloud forest species? Landsc Ecol Eng. doi:10.1007/s11355-015-0277-z

    Google Scholar 

  • Dinerstein E, Olson DM, Graham DJ, Webster AL, Primm SA, Bookbinder MP, Ledec G (1995) A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. World Bank, Washington, p 129

    Book  Google Scholar 

  • Ecuador en Cifras Resultados (2015) Instituto Nacional de Estadísticas y Censos. http://ecuadorencifras.gob.ec/resultados/Accessed 10 Sept 2015

  • Endo M (1994) CAMCORE: twelve years of contribution to reforestation in the Andean region of Colombia. For Ecol Manag 63(2):219–233. doi:10.1016/0378-1127(94)90112-0

    Article  Google Scholar 

  • Endo M, Mesa GV (1992) Results of a pruning trial with Pinus patula in Colombia. Ipef Int Piracicaba 2:45–49

    Google Scholar 

  • Etter A, McAlpine C, Wilson K, Phinn S, Possingham H (2006) Regional patterns of agricultural land use and deforestation in Colombia. Agr Ecosyst Environ 114(2):369–386. doi:10.1016/j.agee.2005.11.013

    Article  Google Scholar 

  • Etter A, McAlpine C, Possingham H (2008) Historical patterns and drivers of landscape change in Colombia since 1500: a regionalized spatial approach. Ann Assoc Am Geogr 98(1):2–23. doi:10.1080/00045600701733911

    Article  Google Scholar 

  • Farley KA (2007) Grasslands to tree plantations: forest transition in the Andes of Ecuador. Ann Assoc Am Geogr 97(4):755–771. doi:10.1111/j.1467-8306.2007.00581.x

    Article  Google Scholar 

  • Gentry AH (1992) Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos. doi:10.2307/3545512

    Google Scholar 

  • Gilroy JJ, Woodcock P, Edwards FA, Wheeler C, Baptiste BL, Uribe CAM, Haugaasen T, Edwards DP (2014) Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat Clim Change 4(6):503–507. doi:10.1038/nclimate2200

    Article  Google Scholar 

  • Goldman-Benner RL, Benitez S, Boucher T, Calvache A, Daily G, Kareiva P, Ramos A (2012) Water funds and payments for ecosystem services: practice learns from theory and theory can learn from practice. Oryx 46(01):55–63. doi:10.1017/S0030605311001050

    Article  Google Scholar 

  • Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004) Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol Appl 14(4):1128–1138. doi:10.1890/03-5084

    Article  Google Scholar 

  • Griscom HP, Ashton PMS, Berlyn GP (2005) Seedling survival and growth of native tree species in pastures: implications for dry tropical forest rehabilitation in central Panama. For Ecol Manag 218(1):306–318. doi:10.1016/j.foreco.2005.08.026

    Article  Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107

    Article  CAS  Google Scholar 

  • Guhl A (2008) Coffee production intensification and landscape change in Colombia, 1970–2002. In: Millington A, Jepson W (eds) Land-change science in the tropics: changing agricultural landscapes. Springer, New York, pp 93–116

    Google Scholar 

  • Günter S, Gonzalez P, Álvarez G, Aguirre N, Palomeque X, Haubrich F, Weber M (2009) Determinants for successful reforestation of abandoned pastures in the Andes: soil conditions and vegetation cover. For Ecol Manag 258(2):81–91. doi:10.1016/j.foreco.2009.03.042

    Article  Google Scholar 

  • Haggar J, Wightman K, Fisher R (1997) The potential of plantations to foster woody regeneration within a deforested landscape in lowland Costa Rica. For Ecol Manag 99(1–2):55–64. doi:10.1016/S0378-1127(97)00194-1

    Article  Google Scholar 

  • Hammen TVD (1974) Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr. doi:10.2307/3038066

    Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853. doi:10.1126/science.1244693

    Article  CAS  PubMed  Google Scholar 

  • Henri CJ (2001) Soil-site productivity of Gmelina arborea, Eucalyptus urophylla and Eucalyptus grandis forest plantations in western Venezuela. For Ecol Manag 144(1):255–264. doi:10.1016/S0378-1127(00)00390-X

    Article  Google Scholar 

  • Holl KD, Loik ME, Lin EH, Samuels IA (2000) Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor Ecol 8(4):339–349. doi:10.1046/j.1526-100x.2000.80049.x

    Article  Google Scholar 

  • Homeier J, Werner FA, Gradstein SR, Breckle S, Richter M (2008) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In: Beck E et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 87–100

    Chapter  Google Scholar 

  • Hooper E, Condit R, Legendre P (2002) Responses of 20 native tree species to reforestation strategies for abandoned farmland in Panama. Ecol Appl 12(6):1626–1641. doi:10.1890/1051-0761

    Article  Google Scholar 

  • Jacobs DF, Oliet JA, Aronson J, Bolte A, Bullock JM, Donoso PJ, Landhäusser SM, Madsen P, Peng S, Rey-Benayas JMR, Weber JC (2015) Restoring forests: what constitutes success in the 21st century? New For Online First. doi:10.1007/s11056-015-9513-5

    Google Scholar 

  • Jha DK, Sharma GD, Mishra RR (1993) Mineral nutrition in the tripartite interaction between Frankia, Glomus and Alnus at different soil phosphorus regimes. New Phytol 123(2):307–311. doi:10.1111/j.1469-8137.1993.tb03740.x

    Article  CAS  Google Scholar 

  • Kattan GH, Alvarez-López H, Giraldo M (1994) Forest fragmentation and bird extinctions: san Antonio eighty years later. Conserv Biol 8(1):138–146. doi:10.1046/j.1523-1739.1994.08010138.x

    Article  Google Scholar 

  • Knoke T, Calvas B, Aguirre N, Román-Cuesta RM, Günter S, Stimm B, Weber M, Mosandl R (2009) Can tropical farmers reconcile subsistence needs with forest conservation? Front Ecol Environ 7(10):548–554. doi:10.1890/080131

    Article  Google Scholar 

  • Lamb D (2011) Regreening the Bare hills. Tropical forest restoration in the Asia-Pacific region. World forests, vol VIII. Springer, Heidelberg

    Google Scholar 

  • Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310(5754):1628–1632. doi:10.1126/science.1111773

    Article  CAS  PubMed  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21(2):71–90. doi:10.1007/s00572-010-0348-9

    Article  PubMed  Google Scholar 

  • León JD, Vélez G, Yepes AP (2009) Estructura y composición florística de tres robledales en la región norte de la cordillera central de Colombia. Rev Biol Trop 57(4):1165–1182

    PubMed  Google Scholar 

  • Lerner AM, Rudel TK, Schneider LC, McGroddy M, Burbano DV, Mena CF (2014) The spontaneous emergence of silvo-pastoral landscapes in the Ecuadorian Amazon: patterns and processes. Reg Environ Change. doi:10.1007/s10113-014-0699-4

    Google Scholar 

  • Maron JL, Connors PG (1996) A native nitrogen-fixing shrub facilitates weed invasion. Oecol 105(3):302–312. doi:10.1007/BF00328732

    Article  Google Scholar 

  • McNamara S, Viet Tinh D, Erskine PD, Lamb D, Yates D, Brown S (2006) Rehabilitating degraded forest land in central Vietnam with mixed native species plantings. For Ecol Manag 233(2–3):358–365. doi:10.1016/j.foreco.2006.05.033

    Article  Google Scholar 

  • Medina M, Orozco H, Diez MC (2008) Establecimiento de un sistema silvopastoril mediante las especies Alnus acuminata HBK y Acacia decurrens Willd y respuesta al empleo de organismos rizosféricos en San Pedro (Antioquia). Livest Res Dev 20(1):Article #7

  • Meza A, Sabogal C, deJong W (2006) Rehabilitación de áreas degradadas en la Amazonia peruana. CIFOR, Indonesia

    Google Scholar 

  • Millet J, Tran N, Vien Ngoc N, Tran Thi T, Prat D (2013) Enrichment planting of native species for biodiversity conservation in a logged tree plantation in Vietnam. New For 44:369–383. doi:10.1007/s11056-012-9344-6

    Article  Google Scholar 

  • Molina M, Medina M, Mahecha L (2008) Microorganismos y micronutrientes en el crecimiento y desarrollo del Aliso (Alnus acuminata H.B.K.) en un sistema silvopastoril alto andino. Livest Res Rural Dev 20(4):Article #54

  • Murcia C (1997) Evaluation of Andean alder as a catalyst for the recovery of tropical cloud forests in Colombia. For Ecol Manag 99(1–2):163–170. doi:10.1016/S0378-1127(97)00202-8

    Article  Google Scholar 

  • Murcia C, Guariguata MR, Andrade Á, Andrade GI, Aronson J, Escobar EM, Montes E (2015) Challenges and prospects for scaling-up ecological restoration to meet international commitments: Colombia as a case study. Conserv Lett. doi:10.1111/conl.12199

    Google Scholar 

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261(10):1654–1663. doi:10.1016/j.foreco.2010.09.027

    Article  Google Scholar 

  • Olson DM, Graham DJ, Webster AL, Primm SA, Bookbinder MP, Ledec G (1995) A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. World Bank, Washington, p 129

    Google Scholar 

  • Ospina Arango OL, Vanegas Pinzón S (2010) Restauración ecológica, rehabilitación y recuperación- plan nacional de restauración de ecosistemas. República de Colombia Ministerio de Ambiente Vivienda y Desarrollo Territorial, Bogotá

    Google Scholar 

  • Parrotta JA, Turnbull JW, Jones N (1997) Catalyzing native forest regeneration on degraded tropical lands. For Ecol Manag 99(1–2):1–7. doi:10.1016/S0378-1127(97)00190-4

    Article  Google Scholar 

  • Piotto D (2008) A meta-analysis comparing tree growth in monocultures and mixed plantations. For Ecol Manag 255(3):781–786. doi:10.1016/j.foreco.2007.09.065

    Article  Google Scholar 

  • Piotto D, Montagnini F, Ugalde L, Kanninen M (2003) Performance of forest plantations in small and medium-sized farms in the Atlantic lowlands of Costa Rica. For Ecol Manag 175(1):195–204. doi:10.1016/S0378-1127(02)00127-5

    Article  Google Scholar 

  • Poorter L (2001) Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Funct Ecol 15(1):113–123. doi:10.1046/j.1365-2435.2001.00503.x

    Article  Google Scholar 

  • Quiceno J, Medina M (2006) La Acacia decurrens Will. fuente potencial de biomasa nutritiva para la ganadería del trópico de altura. Livest Res Rural Dev 18(12):Article #166

  • Reyes SP, Ríos OV (eds) (2011) Proceedings from: La restauración ecológica en la práctica: memorias del I Congreso Colombiano de Restauración Ecológica y II Simposio Nacional de Experiencias en Restauración Ecológica. Universidad Nacional de Colombia, Bogotá

    Google Scholar 

  • Rhoades CC, Eckert GE, Coleman DC (1998) Effect of pasture trees on soil nitrogen and organic matter: implications for tropical montane forest restoration. Restor Ecol 6(3):262–270. doi:10.1046/j.1526-100X.1998.00639.x

    Article  Google Scholar 

  • Ríos W, Quiceno J, Gómez F (2004) Validación y ajuste en sistemas silvopastoriles en la región del eje cafetero, dirigido a productores pequeños y medianos del sistema ganadero doble propósito. CORPOICA, Plan Nacional de Transferencia de Tecnología Agropecuaria, Manizales, Colombia, p 140

    Google Scholar 

  • Rodrigues RR, Gandolfi S, Gustavo Nave A, Aronson J, Egydio Barreto T, Yuri Vidal C, Brancalion PHS (2011) Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For Ecol Manag 261:10:1605–1613. doi:10.1016/j.foreco.2010.07.005

    Article  Google Scholar 

  • Roque RM, Segura EE, Parada EU (2009) Aprovechamiento e industrialización de árboles de Alnus acuminata Kuntz de plantaciones de rápido crecimiento en Costa Rica. Kurú: Revista Forestal (Costa Rica) 6(16):1–11

    Google Scholar 

  • Rudel TK, Defries R, Asner GP, Laurance WF (2009) Changing drivers of deforestation and new opportunities for conservation. Conserv Biol 23(6):1396–1405. doi:10.1111/j.1523-1739.2009.01332.x

    Article  PubMed  Google Scholar 

  • Russo RO (1990) Evaluating Alnus acuminata as a component in agroforestry systems. Agrofor Syst 10(3):241–252. doi:10.1007/BF00122914

    Article  Google Scholar 

  • Sáenz L, Mulligan M, Arjona F, Gutierrez T (2014) The role of cloud forest restoration on energy security. Ecosyst Serv 9:180–190. doi:10.1016/j.ecoser.2014.06.012

    Article  Google Scholar 

  • Sánchez-Cuervo AM, Aide TM, Clark ML, Etter A (2012) Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PLoS One 7(8):e43943. doi:10.1371/journal.pone.0043943

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarmiento FO (1997) Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environ Conserv 24(01):14–23

    Article  Google Scholar 

  • Sarmiento FO, Frolich LM (2002) Andean cloud forest tree lines: naturalness, agriculture and the human dimension. Mt Res Dev 22(3):278–287

    Article  Google Scholar 

  • Schneider T, Ashton MS, Montagnini F, Milan PP (2014) Growth performance of sixty tree species in smallholder reforestation trials on Leyte Philippines. New For 45(1):83–96. doi:10.1007/s11056-013-9393-5

    Article  Google Scholar 

  • Silver W, Ostertag R, Lugo AE (2000) The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor Ecol 8(4):394–407. doi:10.1046/j.1526-100x.2000.80054.x

    Article  Google Scholar 

  • Simard SW, Jones MD, Durall DM (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 33–74

    Chapter  Google Scholar 

  • Society for Ecological Restoration (2004) SER International primer on ecological restoration. Society for Ecological Restoration, Washington

    Google Scholar 

  • Stimm B, Beck E, Günter S, Aguirre N, Cueva E, Mosandl R, Weber M (2008) Reforestation of abandoned pastures: seed ecology of native species and production of indigenous plant material. In: Beck E et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 417–429

    Chapter  Google Scholar 

  • Tapia-Armijos MF, Homeier J, Espinosa CI, Leuschner C, de la Cruz M (2015) Deforestation and forest fragmentation in south Ecuador since the 1970s—losing a hotspot of biodiversity. PLoS one 10(9):e0133701. doi:10.1371/journal.pone.0133701

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonneijck FH, Jansen B, Nierop KGJ, Verstraten JM, Sevink J, De Lange L (2010) Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador. Eur J Soil Sci 61(3):392–405. doi:10.1111/j.1365-2389.2010.01241.x

    Article  CAS  Google Scholar 

  • University of Georgia Laboratory for Environmental Analysis. (2015). Laboratory for environmental analysis: analysis. Web accessed 19 March 2015

  • Urgiles N, Loján P, Aguirre N, Blaschke H, Günter S, Stimm B, Kottke I (2009) Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: a step towards reforestation with native species in the Andes of Ecuador. New For 38(3):229–239. doi:10.1007/s11056-009-9143-x

    Article  Google Scholar 

  • Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37(1):63–75. doi:10.1023/A:1005757218475

    Article  CAS  Google Scholar 

  • Weber M, Günter S, Aguirre N, Stimm B, Mosandl R (2008) Reforestation of abandoned pastures: silvicultural means to accelerate forest recovery and biodiversity. In: Beck E et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 431–441

    Chapter  Google Scholar 

  • Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J (2008a) Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sc 171(2):220–230. doi:10.1002/jpln.200625210

    Article  CAS  Google Scholar 

  • Wilcke W, Yasin S, Schmitt A, Valarezo C, Zech W (2008b) Soils along the altitudinal transect and in catchments. In: Beck E et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 75–85

    Chapter  Google Scholar 

  • Wishnie MH, Dent DH, Mariscal E, Deago J, Cedeno N, Ibarra D, Condit R, Ashton PMS (2007) Initial performance and reforestation potential of 24 tropical tree species planted across a precipitation gradient in the Republic of Panama. For Ecol Manag 243(1):39–49. doi:10.1016/j.foreco.2007.02.001

    Article  Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87(3):391–403. doi:10.1046/j.1365-2745.1999.00361.x

    Article  Google Scholar 

  • Zangaro W, Nishidate FR, Vandresen J, Andrade G, Nogueira MA (2007) Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. J Trop Ecol 23(1):53–62. doi:10.1017/S0266467406003713

    Article  Google Scholar 

  • Zehetner F, Miller WP, West LT (2003) Pedogenesis of volcanic ash soils in Andean Ecuador. Soil Sci Soc Am J 67(6):1797–1809. doi:10.2136/sssaj2003.1797

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support received from the Tropical Resources Institute at the Yale School of Forestry and Environmental Studies and the Gordon and Betty Moore Foundation. Numerous colleagues have assisted with research planning, including Tina Schneider, Florencia Montagnini, Eva Garen, Alicia Calle, and Gillian Bloomfield of the Yale School of Forestry and Environmental Studies and the Environmental Leadership and Training Institute. In Colombia and Ecuador, the authors are grateful for the assistance of Carolina Murcia of CIFOR, Jose Ignacio Barrera of the Universidad Javeriana, Orlando Vargas of the Universidad Nacional, Nikolay Aguirre of the Universidad de Loja, dozens more experts in the fields of conservation and forest restoration, and dozens more project managers, technicians, guides, ranchers, and farmers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Bare.

Appendices

Appendix 1

See Table 4.

Table 4 List of the twelve reforestation sites used for this study in Colombia and Ecuador

Appendix 2

See Table 5.

Table 5 Diameter growth rates of species planted in the 12 study sites (includes species with at least three individuals planted)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bare, M.C., Ashton, M.S. Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New Forests 47, 333–355 (2016). https://doi.org/10.1007/s11056-015-9519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-015-9519-z

Keywords

Navigation