Skip to main content
Log in

Analysis of the Relationship between Genetic Factors and the Risk of Schizophrenia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The etiology and pathogenesis of schizophrenia remain poorly understood, though it has been established that the contribution of heredity to the development of the disease is 80–85%. Over the past decade, significant progress has been made in the search for specific genetic variants associated with the development of schizophrenia. In this review, we discuss the results of recent large-scale studies seeking genetic associations with schizophrenia: genome-wide association studies (GWAS) and searches for rare variants (mutations or copy number variations, CNV), including studies using whole-exome sequencing. We synthesize data on currently known genes which are significantly associated with the development of schizophrenia and discuss their biological functions to identify the main molecular pathways involved in the pathophysiology of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Vos, S. S. Lim, C. Abbafati, et al., “Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019,” Lancet, 396, No. 10258, 1204–1222 (2020), https://doi.org/https://doi.org/10.1016/S0140-6736 (20)30925-9.

    Article  Google Scholar 

  2. A. G. Cardno and I. I. Gottesman, “Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics,” Am. J. Med. Genet., 97, No. 1, 12–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. R. Hilker, D. Helenius, B. Fagerlund, et al., “Heritability of schizophrenia and schizophrenia spectrum based on the Nationwide Danish Twin Register,” Biol. Psychiatry, 83, No. 6, 492–498 (2018), https://doi.org/https://doi.org/10.1016/j.biopsych.2017.08.017.

    Article  PubMed  Google Scholar 

  4. P. F. Sullivan, K. S. Kendler, and M. C. Neale, “Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies,” Arch. Gen. Psychiatry, 60, No. 12, 1187–1192 (2003), https://doi.org/https://doi.org/10.1001/archpsyc.60.12.1187.

    Article  PubMed  Google Scholar 

  5. V. Tam, N. Patel, M. Turcotte, et al., “Benefits and limitations of genome-wide association studies,” Nat. Rev. Genet., 20, No. 8, 467–484 (2019), https://doi.org/https://doi.org/10.1038/s41576-019-0127-1.

    Article  CAS  PubMed  Google Scholar 

  6. E. Uffelmann, Q. Q. Huang, N. S. Munung, et al., “Genome-wide association studies,” Nat. Rev. Methods Primers, 1, No. 1, 1–21 (2021), https://doi.org/https://doi.org/10.1038/s43586-021-00056-9.

    Article  CAS  Google Scholar 

  7. W. S. Bush and J. H. Moore, “Chapter 11: Genome-wide association studies,” PLoS Comput. Biol., 8, No. 12, e1002822 (2012), https://doi.org/10.1371/journal.pcbi.1002822.

  8. H. Stefansson, R. A. Ophoff, S. Steinberg, et al., “Common variants conferring risk of schizophrenia,” Nature, 460, No. 7256, 744–747 (2009), https://doi.org/https://doi.org/10.1038/nature08186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, “Genome-wide association study identifies five new schizophrenia loci,” Nat. Genet., 43, No. 10, 969–976 (2011), https://doi.org/10.1038/ng.940.

  10. Schizophrenia Working Group of the Psychiatric Genomics Consortium, “Biological insights from 108 schizophrenia-associated genetic loci,” Nature, 511, No. 7510, 421–427 (2014), https://doi.org/https://doi.org/10.1038/nature13595.

    Article  CAS  PubMed Central  Google Scholar 

  11. A. F. Pardiñas, P. Holmans, A. J. Pocklington, et al., “Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection,” Nat. Genet., 50, No. 3, 381–389 (2018), https://doi.org/https://doi.org/10.1038/s41588-018-0059-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. V. Trubetskoy, A. F. Pardiñas, T. Qi, et al., “Mapping genomic loci implicates genes and synaptic biology in schizophrenia,” Nature, 604, No. 7906, 502–508 (2022), https://doi.org/https://doi.org/10.1038/s41586-022-04434-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Pohlan, B. A. Leidel, and T. Lindner, “Neurogranin,” in: Biomarkers for Traumatic Brain Injury, A. H. B. Wu and W. F. Peacock (eds.), Academic Press (2020), Chpt. 5, pp. 211–219, https://doi.org/10.1016/B978-0-12-816346-7.00015-4.

  14. J. H. Pak, F. L. Huang, J. Li, et al., “Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase, synaptic plasticity, and spatial learning: a study with knockout mice,” Proc. Natl. Acad. Sci. USA, 97, No. 21, 11232–11237 (2000), https://doi.org/https://doi.org/10.1073/pnas.210184697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. Miyakawa, E. Yared, J. H. Pak, et al., “Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components,” Hippocampus, 11, No. 6, 763–775 (2001), https://doi.org/https://doi.org/10.1002/hipo.1092.

    Article  CAS  PubMed  Google Scholar 

  16. T. Toulopoulou, M. Picchioni, F. Rijsdijk, et al., “Substantial genetic overlap between neurocognition and schizophrenia: genetic modeling in twin samples,” Arch. Gen. Psychiatry, 64, No. 12, 1348–1355 (2007), https://doi.org/https://doi.org/10.1001/archpsyc.64.12.1348.

    Article  PubMed  Google Scholar 

  17. K. Nakazawa and K. Sapkota, “The origin of NMDA receptor hypofunction in schizophrenia,” Pharmacol. Ther., 205, 107426 (2020), https://doi.org/https://doi.org/10.1016/j.pharmthera.2019.107426.

    Article  CAS  PubMed  Google Scholar 

  18. S. Mesman, R. Bakker, and Smidt, M. P., “Tcf4 is required for correct brain development during embryogenesis,” Mol. Cell. Neurosci., 106, 103502 (2020), https://doi.org/10.1016/j.mcn.2020.103502.

  19. E. Mahmoudi and M. J. Cairns, “MiR-137: an important player in neural development and neoplastic transformation,” Mol. Psychiatry, 22, No. 1, 44–55 (2017), https://doi.org/https://doi.org/10.1038/mp.2016.150.

    Article  CAS  PubMed  Google Scholar 

  20. G. Sun, P. Ye, K. Murai, et al., “miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells,” Nat. Commun., 2, 529 (2011), https://doi.org/https://doi.org/10.1038/ncomms1532.

    Article  CAS  PubMed  Google Scholar 

  21. T. A. Lett, M. M. Chakravarty, M. M. Chakavarty, et al., “The genome- wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia,” Mol. Psychiatry, 18, No. 4, 443–450 (2013), https://doi.org/https://doi.org/10.1038/mp.2013.17.

    Article  CAS  PubMed  Google Scholar 

  22. I. Guella, A. Sequeira, B. Rollins, et al., “Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex,” J. Psychiatr. Res., 47, No. 9, 1215–1221 (2013), https://doi.org/https://doi.org/10.1016/j.jpsychires.2013.05.021.

    Article  PubMed  PubMed Central  Google Scholar 

  23. L. Zhao, H. Li, R. Guo, et al., “miR-137, a new target for post-stroke depression?” Neural Regen. Res., 8, No. 26, 2441–2448 (2013), https://doi.org/https://doi.org/10.3969/j.issn.1673-5374.2013.26.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. W. Hu, M. L. MacDonald, D. E. Elswick, and R. A. Sweet, “The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies,” Ann. N. Y. Acad. Sci., 1338, No. 1, 38–57 (2015), https://doi.org/https://doi.org/10.1111/nyas.12547.

    Article  CAS  PubMed  Google Scholar 

  25. A. A. Shmakova, K. A. Rubina, K. V. Anokhin, et al., “The role of plasminogen activator system in the pathogenesis of epilepsy,” Biochemistry (Mosc.), 84, No. 9, 979–991 (2019), https://doi.org/https://doi.org/10.1134/S0006297919090013.

    Article  CAS  Google Scholar 

  26. B. Torrico, A. D. Shaw, R. Mosca, et al., “Truncating variant burden in high-functioning autism and pleiotropic effects of LRP1 across psychiatric phenotypes,” J. Psychiatr. Neurosci., 44, No. 5, 350–359 (2019), https://doi.org/https://doi.org/10.1503/jpn.180184.

    Article  Google Scholar 

  27. T. A. Pollak, J. P. Rogers, R. G. Nagele, et al., “Antibodies in the diagnosis, prognosis, and prediction of psychotic disorders,” Schizophr. Bull., 45, No. 1, 233–246 (2019), https://doi.org/https://doi.org/10.1093/schbul/sby021.

    Article  PubMed  Google Scholar 

  28. O. M. Zakharenko, T. P. Kliushnik, I. A. Kozlova, et al., “Nerve growth factor auto-antibodies in the sera of mothers of schizophrenic children and children from high risk group,” Zh. Nevrol. Psikhiat., 99, No. 3, 44–46 (1999).

    CAS  Google Scholar 

  29. O. P. Shmakova, L. V. Androsova, A. A. Shmakova, et al., “Clinical immunological correlates of mental disorders not in exacerbation,” Psikhiatriya, 65, No. 1, 17–23 (2015).

    Google Scholar 

  30. M. Hussein and R. Magdy, “MicroRNAs in central nervous system disorders: current advances in pathogenesis and treatment,” Egypt, J. Neurol. Psychiatry Neurosurg., 57, No. 1, 36 (2021), https://doi.org/10.1186/s41983-021-00289-1.

  31. A. A. Shmakova, K. D. Rysenkova, O. I. Ivashkina, et al., “Early induction of neurotrophin receptor and miRNA genes in mouse brain after pentilenetetrazole-induced neuronal activity,” Biochemistry (Mosc.), 86, No. 10, 1326–1341 (2021), https://doi.org/https://doi.org/10.1134/S0006297921100138.

    Article  CAS  PubMed  Google Scholar 

  32. E. V. Semina, K. D. Rysenkova, K. E. Troyanovskiy, et al., “Micro- RNAs in cancer: From gene expression regulation to the metastatic niche reprogramming,” Biochemistry (Mosc.), 86, No. 7, 785–799 (2021), https://doi.org/https://doi.org/10.1134/S0006297921070014.

    Article  CAS  PubMed  Google Scholar 

  33. D. D. Cao, L. Li, and Chan, W. Y., “MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases,” Int. J. Mol. Sci., 17, No. 6, 842 (2016), https://doi.org/10.3390/ijms17060842.

  34. E. Semina, K. Rubina, V. Sysoeva, et al., “Urokinase and urokinase receptor participate in regulation of neuronal migration, axon growth and branching,” Eur. J. Cell Biol., 95, No. 9, 295–310 (2016), https://doi.org/https://doi.org/10.1016/j.ejcb.2016.05.003.

    Article  CAS  PubMed  Google Scholar 

  35. A. A. Shmakova, A. V. Balatskiy, M. A. Kulebyakina, et al., “Urokinase receptor uPAR overexpression in mouse brain stimulates the migration of neurons into the cortex during embryogenesis,” Russ. J. Dev. Biol., 52, No. 1, 53–63 (2021), https://doi.org/https://doi.org/10.1134/S1062360421010069.

    Article  CAS  Google Scholar 

  36. A. A. Shmakova, K. A. Rubina, K. D. Rysenkova, et al., “Urokinase receptor and tissue plasminogen activator as immediate early genes in pentylenetetrazole-induced seizures in the mouse brain,” Eur. J. Neurosci., 51, No. 7, 1559–1572 (2020), https://doi.org/https://doi.org/10.1111/ejn.14584.

    Article  PubMed  Google Scholar 

  37. K. D. Rysenkova, P. S. Klimovich, A. A. Shmakova, et al., “Urokinase receptor deficiency results in EGFR-mediated failure to transmit signals for cell survival and neurite formation in mouse neuroblastoma cells,” Cell. Signal., 75, 109741–109741 (2020), https://doi.org/https://doi.org/10.1016/j.cellsig.2020.109741.

    Article  CAS  PubMed  Google Scholar 

  38. M. Lek, K. J. Karczewski, E. V. Minikel, et al., “Analysis of protein- coding genetic variation in 60,706 humans,” Nature, 536, No. 7616, 285–291 (2016), https://doi.org/https://doi.org/10.1038/nature19057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A. L. Collins, Y. Kim, R. J. Bloom, et al., “Transcriptional targets of the schizophrenia risk gene MIR137,” Transl. Psychiatry, 4, No. 7, 404–404 (2014), https://doi.org/https://doi.org/10.1038/tp.2014.42.

    Article  CAS  Google Scholar 

  40. K. A. Rubina, E. I. Surkova, E. V. Semina, et al., “T-Cadherin expression in melanoma cells stimulates stromal cell recruitment and invasion by regulating the expression of chemokines, integrins and adhesion molecules,” Cancers (Basel), 7, No. 3, 1349–1370 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. K. A. Rubina, E. V. Semina, N. I. Kalinina, et al., “Revisiting the multiple roles of T cadherin in health and disease,” Eur. J. Cell Biol., 100, No. 7, 151183 (2021), https://doi.org/10.1016/j.ejcb.2021.151183.

  42. J. Lasky-Su, B. M. Neale, B. Franke, et al., “Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations,” Am. J. Med. Genet. B. Neuropsychiatr. Genet., 1457B, No. 8, 1345–1354 (2008), https://doi.org/https://doi.org/10.1002/ajmg.b.30867.

    Article  CAS  Google Scholar 

  43. A. Salatino-Oliveira, J. P. Genro, G. Polanczyk, et al., “Cadherin-13 gene is associated with hyperactive/impulsive symptoms in attention/deficit hyperactivity disorder,” Am. J. Med. Genet. B. Neuropsychiatr. Genet., 168, No. 3, 162–169 (2015), https://doi.org/https://doi.org/10.1002/ajmg.b.32293.

    Article  CAS  Google Scholar 

  44. S. J. Sanders, A. G. Ercan-Sencicek, V. Hus, et al., “Multiple recurrent de novo copy number variations (CNVs), including duplications of the 7q11.23 Williams-Beuren syndrome region, are strongly associated with autism,” Neuron, 70, No. 5, 863–885 (2011), https://doi.org/https://doi.org/10.1016/j.neuron.2011.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S. J. Sanders, X. He, A. J. Willsey, et al., “Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci,” Neuron, 87, No. 6, 1215–1233 (2015), https://doi.org/https://doi.org/10.1016/j.neuron.2015.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M. Tantra, L. Guo, J. Kim, et al., “Conditional deletion of cadherin 13 perturbs Golgi cells and disrupts social and cognitive behaviors,” Genes Brain Behav., 17, No. 6, e12466 (2018), https://doi.org/10.1111/gbb.12466.

  47. D. Holland, O. Frei, R. Desikan, et al., “Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model,” PLOS Genet., 16, No. 5, e1008612 (2020), https://doi.org/10.1371/journal.pgen.1008612.

  48. T. Kanazawa, C. A. Bousman, C. Liu, and Everall, I. P., “Schizophrenia genetics in the genome-wide era: a review of Japanese studies,” NPJ Schizophr., 3, No. 1, 1–6, https://doi.org/10.1038/s41537-017-0028-2. (2017).

  49. J. Gratten, N. R. Wray, M. C. Keller, and P. M. Visscher, “Largescale genomics unveils the genetic architecture of psychiatric disorders,” Nat. Neurosci., 17, No. 6, 782–790 (2014), https://doi.org/https://doi.org/10.1038/nn.3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. T. Singh, T. Poterba, D. Curtis, et al., “Rare coding variants in ten genes confer substantial risk for schizophrenia,” Nature, 604, No. 7906, 509–516 (2022), https://doi.org/https://doi.org/10.1038/s41586-022-04556-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. X. Zhou, J. M. Long, M. A. Geyer, et al., “Reduced expression of the Sp4 gene in mice causes deficits in sensorimotor gating and memory associated with hippocampal vacuolization,” Mol. Psychiatry, 10, No. 4, 393–406 (2005), https://doi.org/https://doi.org/10.1038/sj.mp.4001621.

    Article  CAS  PubMed  Google Scholar 

  52. X. Zhou, Y. Qyang, J. R. Kelsoe, et al., “Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice,” Genes Brain Behav., 6, No. 3, 269–276 (2007), https://doi.org/https://doi.org/10.1111/j.1601-183X.2006.00256.x.

    Article  CAS  PubMed  Google Scholar 

  53. X. Wang, A. Pinto-Duarte, M. M. Behrens, et al., “Ketamine independently modulated power and phase-coupling of theta oscillations in Sp4 hypomorphic mice,” PLoS One, 13, No. 3, e0193446 (2018), https://doi.org/https://doi.org/10.1371/journal.pone.0193446.

    Article  CAS  Google Scholar 

  54. Zhou, X., “Over-representation of potential SP4 target genes within schizophrenia-risk genes,” Mol. Psychiatry, 27, No. 2, 849–854 (2022), https://doi.org/https://doi.org/10.1038/s41380-021-01376-8.

    Article  CAS  PubMed  Google Scholar 

  55. T. Chano, H. Okabe, and Hulette, C. M., “RB1CC1 insufficiency causes neuronal atrophy through mTOR signaling alteration and involved in the pathology of Alzheimer’s diseases,” Brain Res., 1168, 97–105 (2007), https://doi.org/10.1016/j.brainres.2007.06.075.

  56. C. C. Liang, C. Wang, X. Peng, et al., “Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration,” J. Biol. Chem., 285, No. 5, 3499–3509 (2010), https://doi.org/https://doi.org/10.1074/jbc.M109.072389.

    Article  CAS  PubMed  Google Scholar 

  57. C. Wang, C. C. Liang, Z. C. Bian, et al., “FIP200 is required for maintenance and differentiation of postnatal neural stem cells,” Nat. Neurosci., 16, No. 5, 532–542 (2013), https://doi.org/https://doi.org/10.1038/nn.3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. J. Mukai, E. Cannavò, G. W. Crabtree, et al., “Recapitulation and reversal of schizophrenia-related phenotypes in Setd1a-deficient mice,” Neuron, 104, No. 3, 471–487.e12 (2019), https://doi.org/https://doi.org/10.1016/j.neuron.2019.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. K. Nagahama, K. Sakoori, T. Watanabe, et al., “Setd1a insufficiency in mice attenuates excitatory synaptic function and recapitulates schizophrenia-related behavioral abnormalities,” Cell Rep., 32, No. 11, 108126 (2020), https://doi.org/10.1016/j.celrep.2020.108126.

  60. R. Chen, Y. Liu, M. N. Djekidel, et al., “Cell type-specific mechanism of Setd1a heterozygosity in schizophrenia pathogenesis,” Sci. Adv., 8, No. 9, eabm1077 (2022), https://doi.org/10.1126/sciadv.abm1077.

  61. K. D. Rysenkova, K. E. Troyanovskiy, P. S. Klimovich, et al., “Identification of a novel small RNA encoded in the mouse urokinase receptor uPAR gene (Plaur) and its molecular target Mef2d,” Front. Mol. Neurosci., 15 (2022), https://doi.org/10.3389/fnmol.2022.865858, https://www.frontiersin.org/articles/, acc. Aug. 7, 2022.

  62. W. Ba, Y. Yan, M. R. F. Reijnders, et al., “TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function,” Hum. Mol. Genet., 25, No. 5, 892–902 (2016), https://doi.org/https://doi.org/10.1093/hmg/ddv618.

    Article  CAS  PubMed  Google Scholar 

  63. S. M. Katrancha, Y. Wu, M. Zhu, et al., “Neurodevelopmental disease- associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity,” Hum. Mol. Genet., 26, No. 23, 4728–4740 (2017), https://doi.org/https://doi.org/10.1093/hmg/ddx355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S. Barbosa, S. Greville-Heygate, M. Bonnet, et al., “Opposite modulation of RAC1 by mutations in TRIO is associated with distinct, domain-specific neurodevelopmental disorders,” Am. J. Hum. Genet., 106, No. 3, 338–355 (2020), https://doi.org/https://doi.org/10.1016/j.ajhg.2020.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. H. C. Archbold, K. L. Jackson, A. Arora, et al., “TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia,” Sci. Rep., 8, No. 1, 4606 (2018), https://doi.org/10.1038/s41598-018-22858-w.

  66. O. Pös, J. Radvanszky, G. Buglyó, et al., “DNA copy number variation: Main characteristics, evolutionary significance, and pathological aspects,” Biomed. J., 44, No. 5, 548–559 (2021), https://doi.org/https://doi.org/10.1016/j.bj.2021.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. A. K. Singh, M. F. Olsen, L. A. S. Lavik, et al., “Detecting copy number variation in next generation sequencing data from diagnostic gene panels,” BMC Med. Genomics, 14, No. 1, 214 (2021), https://doi.org/10.1186/s12920-021-01059-x.

  68. C. F. Lin, A. C. Naj, and Wang, L. S., “Analyzing copy number variation using SNP array data: Protocols for calling CNV and association tests,” Curr. Protoc. Hum. Genet., 79, Unit-1.27 (2013), https://doi.org/10.1002/0471142905.hg0127s79.

  69. C. R. Marshall, D. P. Howrigan, D. Merico, et al., “Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects,” Nat. Genet., 49, No. 1, 27–35 (2017), https://doi.org/https://doi.org/10.1038/ng.3725.

    Article  CAS  PubMed  Google Scholar 

  70. E. Michaelovsky, M. Carmel, A. Frisch, et al., “Risk gene-set and pathways in 22q11.2 deletion-related schizophrenia: a genealogical molecular approach,” Transl. Psychiatry, 9, No. 1, 1–9 (2019), https://doi.org/https://doi.org/10.1038/s41398-018-0354-9.

    Article  Google Scholar 

  71. O. K. Vo, A. McNeill, and K. S. Vogt, “The psychosocial impact of 22q11 deletion syndrome on patients and families: A systematic review,” Am. J. Med. Genet. A, 176, No. 10, 2215–2225 (2018), https://doi.org/https://doi.org/10.1002/ajmg.a.38673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. M. Schneider, M. Debbané, A. S. Bassett, et al., “Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome,” Am. J. Psychiatry, 171, No. 6, 627–639 (2014), https://doi.org/https://doi.org/10.1176/appi.ajp.2013.13070864.

    Article  PubMed  PubMed Central  Google Scholar 

  73. D. M. McDonald-McGinn, K. E. Sullivan, B. Marino, et al., ”22q11.2 deletion syndrome,” Nat. Rev. Dis. Primers, 1, No. 1, 1–19 (2015), https://doi.org/10.1038/nrdp.2015.71.

  74. J. Mukai, M. Tamura, K. Fénelon, et al., “Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia,” Neuron, 86, No. 3, 680–695 (2015), https://doi.org/https://doi.org/10.1016/j.neuron.2015.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. E. H. Barriga, D. N. Alasaadi, C. Mencarelli, et al., “RanBP1 plays an essential role in directed migration of neural crest cells during development,” publ. online May 7, 2022:2022.05.05.490747, https://doi.org/10.1101/2022.05.05.490747.

  76. A. Sekar, A. R. Bialas, H. de Rivera, et al., “Schizophrenia risk from complex variation of complement component 4,” Nature, 530, No. 7589, 177–183 (2016), https://doi.org/https://doi.org/10.1038/nature16549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shmakova.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 123, No. 2, Iss. 1, pp. 26–36, February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmakova, A.A., Semina, E.V., Neyfeld, E.A. et al. Analysis of the Relationship between Genetic Factors and the Risk of Schizophrenia. Neurosci Behav Physi 53, 1128–1138 (2023). https://doi.org/10.1007/s11055-023-01513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01513-6

Keywords

Navigation