Skip to main content
Log in

Potential of a Brain–Computer Interface for Correcting Poststroke Cognitive Impairments

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Brain–computer interfaces (BCI) are actively used in neurorehabilitation. Recent years have seen the accumulation of an extensive database of results from clinical studies conducted around the world demonstrating the efficacy of BCI in restoring motor function after stroke. The use of BCI in post-stroke cognitive impairment continues to expand. This article discusses the potential and prospects for the use of BCI in the treatment of cognitive disorders and experience of its use, presents results from clinical studies in stroke patients, evaluates the possibilities of using this technology, and describes its prospects and new areas of work addressing its effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbay, M., Diouf, M., Roussel, M., and Godefroy, O., “GRECOGVASC study group. systematic review and meta-analysis of prevalence in post-stroke neurocognitive disorders in hospital-based studies,” Dement. Geriatr. Cogn. Disord., 46, No. 5–6, 322–334 (2018), https://doi.org/10.1159/000492920.

    Article  PubMed  Google Scholar 

  2. Sun, X., Li, M., Li, Q., et al., “Poststroke cognitive impairment research progress on application of brain–computer interface,” Biomed. Res. Int., 9935192 (2022), https://doi.org/10.1155/2022/9935192.

  3. Lo, J. W., Crawford, J. D., Desmond, D. W., et al., “Stroke and Cognition (STROKOG) Collaboration. Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups,” Neurology, 93, No. 24, 2257–2271 (2019), https://doi.org/10.1212/WNL.0000000000008612.

    Article  Google Scholar 

  4. Soekadar, S. R., Birbaumer, N., Slutzky, M. W., and Cohen, L. G., “Brain–machine interfaces in neurorehabilitation of stroke,” Neurobiol. Dis., 83, 172–179 (2015), https://doi.org/10.1016/j.nbd.2014.11.025.

    Article  PubMed  Google Scholar 

  5. Sebastián-Romagosa, M., Cho, W., Ortner, R., et al., “Brain computer interface treatment for motor rehabilitation of upper extremity of stroke patients – A feasibility study,” Front. Neurosci., 14, 591435 (2020), https://doi.org/10.3389/fnins.2020.591435.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nie, J. and Yang, X., “modulation of synaptic plasticity by exercise training as a basis for ischemic stroke rehabilitation,” Cell. Mol. Neurobiol., 37, No. 1, 5–16 (2017), https://doi.org/10.1007/s10571-016-0348-1.

    Article  CAS  PubMed  Google Scholar 

  7. Ortiz, M., Ferrero, L., et al., “Sensory integration in human movement: A new brain–machine interface based on gamma band and attention level for controlling a lower-limb exoskeleton,” Front. Bioeng. Biotechnol., 8, 735 (2020), https://doi.org/10.3389/fbioe.2020.00735.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kleih, S. C., Herweg, A., Kaufmann, T., et al., “The WIN-speller: a new intuitive auditory brain–computer interface spelling application,” Front. Neurosci., 9, 346 (2015), https://doi.org/10.3389/fnins.2015.00346.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharma, N., Simmons, L. H., Jones, P. S., et al., “Motor imagery after subcortical Stroke: a functional magnetic resonance imaging study,” Stroke, 40, No. 4, 1315–1324 (2009), https://doi.org/10.1161/STROKEAHA.108.525766.

    Article  PubMed  Google Scholar 

  10. Al-Qazzaz, N. K., Alyasseri, Z. A. A., Abdulkareem, K. H., et al., “EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation,” Comput. Biol. Med., 137, 104799 (2021), https://doi.org/10.1016/j.compbiomed.2021.104799.

    Article  PubMed  Google Scholar 

  11. Kruse, A., Suica, Z., Taeymans, J., and Schuster-Amft, C., “Effect of brain–computer interface training based on non-invasive electroencephalography using motor imagery on functional recovery after stroke – a systematic review and meta-analysis,” BMC Neurol., 20, No. 1, 385 (2020), https://doi.org/10.1186/s12883-020-01960-5.

  12. Le Franc, S., Herrera Altamira, G., Guillen, M., et al., “Toward an adapted neurofeedback for post-stroke motor rehabilitation: State of the art and perspectives,” Front. Hum. Neurosci., 16, 917909 (2022), https://doi.org/10.3389/fnhum.2022.917909.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xie, Y. L., Yang, Y. X., Jiang, H., et al., “Brain–machine interface-based training for improving upper extremity function after stroke: A meta-analysis of randomized controlled trials,” Front. Neurosci., 16, 949575 (2022), https://doi.org/10.3389/fnins.2022.949575.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lyukmanov, R. Kh., Aziatskaya, G. A., and Mokienko, O. A., et al., “Post-stroke rehabilitation training with a brain–computer interface: a clinical and neuropsychological study,” Zh. Nevrol. Psikhiatr., 118, No. 8, 43–51 (2018), https://doi.org/10.17116/jnevro201811808143.

  15. Kotov, S. V., Romanova, M. V., and Kondur, A. A., et al., “ Reorganization of the bioelectrical activity of the neocortex after stroke as a result of rehabilitation using the brain–computer interface controlling a hand exoskeleton,” Zh. Vyssh. Nerv. Deyat., 70, No. 2, 217–230 (2020), https://doi.org/10.31857/S0044467720020082.

  16. Foong, R., Ang, K. K., Quek, C., et al., “Assessment of the efficacy of EEG-based MI-BCI with visual feedback and EEG correlates of mental fatigue for upper-limb stroke rehabilitation,” IEEE Trans. Biomed. Eng., 67, No. 3, 786–795 (2020), https://doi.org/10.1109/TBME.2019.2921198.

    Article  PubMed  Google Scholar 

  17. Wu, Q., Yue, Z., Ge, Y., et al., “brain functional networks study of subacute stroke patients with upper limb dysfunction after comprehensive rehabilitation including BCI training,” Front. Neurol., 10, 1419 (2020), https://doi.org/10.3389/fneur.2019.01419.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhan, G., Chen, S., Ji, Y., et al., “EEG-based brain network analysis of chronic stroke patients after BCI rehabilitation training,” Front. Hum. Neurosci., 16, 909610 (2022), https://doi.org/10.3389/fnhum.2022.909610.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hammer, E. M., Halder, S., Kleih, S. C., and Kübler, A., “Psychological predictors of visual and auditory P300 brain–computer interface performance,” Front. Neurosci., 12, 307 (2018), https://doi.org/10.3389/fnins.2018.00307.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kleih, S. C., Nijboer, F., Halder, S., and Kübler, A., “Motivation modulates the P300 amplitude during brain–computer interface use,” Clin. Neurophysiol., 121, No. 7, 1023–1031 (2010), https://doi.org/10.1016/j.clinph.2010.01.034.

    Article  CAS  PubMed  Google Scholar 

  21. Baykara, E., Ruf, C. A., Fioravanti, C., et al., “Effects of training and motivation on auditory P300 brain–computer interface performance,” Clin. Neurophysiol., 127, No. 1, 379–387 (2016), https://doi.org/10.1016/j.clinph.2015.04.054.

    Article  CAS  PubMed  Google Scholar 

  22. Ke, Y., Wang, P., Chen, Y., et al., “Training and testing ERP-BCIs under different mental workload conditions,” J. Neural Eng., 13, No. 1, 016007 (2016), https://doi.org/10.1088/1741-2560/13/1/016007.

  23. Acevedo, B. P., Dattatri, N., Le, J., et al., “Cognitive training with neurofeedback using fNIRS improves cognitive function in older adults,” Int. J. Environ. Res. Public Health, 19, No. 9, 5531 (2022), https://doi.org/10.3390/ijerph19095531.

  24. Nouchi, R., Nouchi, H., Dinet, J., and Kawashima, R., “Cognitive training with neurofeedback using NIRS improved cognitive functions in young adults: Evidence from a randomized controlled trial,” Brain Sci., 12, No. 1, 5 (2021), https://doi.org/10.3390/brainsci12010005.

  25. Lim, C. G., Poh, X. W. W., Fung, S. S. D., et al., “A randomized controlled trial of a brain–computer interface based attention training program for ADHD,” PLoS One, 14, No. 5, 0216225 (2019), https://doi.org/10.1371/journal.pone.0216225.

    Article  CAS  Google Scholar 

  26. Lee, T. S., Goh, S. J., Quek, S. Y., et al., “A brain–computer interface based cognitive training system for healthy elderly: a randomized control pilot study for usability and preliminary efficacy,” PLoS One, 8, No. 11, 79419 (2013), https://doi.org/10.1371/journal.pone.0079419.

    Article  CAS  Google Scholar 

  27. Marcos-Martínez, D., Martínez-Cagigal, V., Santamaría-Vázquez, E., et al., “Neurofeedback training based on motor imagery strategies increases EEG complexity in elderly population,” Entropy (Basel), 23, No. 12, 1574 (2021), https://doi.org/10.3390/e23121574.

    Article  Google Scholar 

  28. Bussalb, A., Congedo, M., Barthélemy, Q., et al., “Clinical and experimental factors influencing the efficacy of neurofeedback in ADHD: A meta-analysis,” Front. Psychiatry, 10, 35 (2019), https://doi.org/10.3389/fpsyt.2019.00035.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gomez-Pilar, J., Corralejo, R., Nicolas-Alonso, L. F., et al., “Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly,” Med. Biol. Eng. Comput., 54, No. 11, 1655–1666 (2016), https://doi.org/10.1007/s11517-016-1454-4.

    Article  PubMed  Google Scholar 

  30. Alatorre-Cruz, G. C., Fernández, T., Castro-Chavira, S. A., et al., “One-year follow-up of healthy older adults with electroencephalographic risk for neurocognitive disorder after neurofeedback training,” J. Alzheimers Dis., 85, No. 4, 1767–1781 (2022), https://doi.org/10.3233/JAD-215538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Riccio, A., Pichiorri, F., Schettini, F., et al., “Interfacing brain with computer to improve communication and rehabilitation after brain damage,” Prog. Brain Res., 228, 357–387 (2016), https://doi.org/10.1016/bs.pbr.2016.04.018.

    Article  CAS  PubMed  Google Scholar 

  32. Ali, J. I., Viczko, J., and Smart, C. M., “Efficacy of neurofeedback interventions for cognitive rehabilitation following brain injury: Systematic review and recommendations for future research,” J. Int. Neuropsychol. Soc., 26, No. 1, 31–46 (2020), https://doi.org/10.1017/S1355617719001061.

    Article  PubMed  Google Scholar 

  33. Martin, S., Armstrong, E., Thomson, E., et al., “A qualitative study adopting a user-centered approach to design and validate a brain computer interface for cognitive rehabilitation for people with brain injury,” Assist. Technol., 30, No. 5, 233–241 (2018), https://doi.org/10.1080/10400435.2017.1317675.

    Article  PubMed  Google Scholar 

  34. Yang, S., Li, R., Li, H., et al., “Exploring the use of brain–computer interfaces in stroke neurorehabilitation,” Biomed. Res. Int., 2021, 9967348 (2021), https://doi.org/10.1155/2021/9967348.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mane, R., Chouhan, T., and Guan, C., “BCI for stroke rehabilitation: motor and beyond,” J. Neural Eng., 17, No. 4, 041001 (2020), https://doi.org/10.1088/1741-2552/aba162.

  36. Pichiorri, F. and Mattia, D., “Brain–computer interfaces in neurologic rehabilitation practice,” Handb. Clin. Neurol., 168, 101–116 (2020), https://doi.org/10.1016/B978-0-444-63934-9.00009-3.

    Article  PubMed  Google Scholar 

  37. Zhao, C. G., Ju, F., Sun, W., et al., “Effects of training with a brain–computer interface-controlled robot on rehabilitation outcome in patients with subacute stroke: A randomized controlled trial,” Neurol. Ther., 11, No. 2, 679–695 (2022), https://doi.org/10.1007/s40120-022-00333-z.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reichert, J. L., Kober, S. E., Schweiger, D., et al., “Shutting down sensorimotor interferences after stroke: A proof-of-principle SMR neurofeedback study,” Front. Hum. Neurosci., 10, 348 (2016), https://doi.org/10.3389/fnhum.2016.00348.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nan, W., Dias, A. P. B., and Rosa, A. C., “Neurofeedback training for cognitive and motor function rehabilitation in chronic stroke: Two case reports,” Front. Neurol., 10, 800 (2019), https://doi.org/10.3389/fneur.2019.00800.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cho, H. Y., Kim, K., Lee, B., and Jung, J., “The effect of neurofeedback on a brain wave and visual perception in stroke: a randomized control trial,” J. Phys. Ther. Sci., 27, No. 3, 673–676 (2015), https://doi.org/10.1589/jpts.27.673.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kober, S. E., Schweiger, D., Reichert, J. L., et al., “Upper alpha based neurofeedback training in chronic stroke: Brain plasticity processes and cognitive effects,” Appl. Psychophysiol. Biofeedback, 42, No. 1, 69–83 (2017), https://doi.org/10.1007/s10484-017-9353-5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kotov, S. V., Isakova, E. V., and Slyun’kova, E. V., “Usage of brain–computer interface + exoskeleton technology as a part of complex multimodal stimulation in the rehabilitation of patients with stroke,” Zh. Nevrol. Psikhiatr., 119, No. 12–2, 37–42 (2019), https://doi.org/10.17116/jnevro201911912237.

  43. Mohanty, R., Sinha, A. M., Remsik, A. B., et al., “Machine learning classification to identify the stage of brain–computer interface therapy for stroke rehabilitation using functional connectivity,” Front. Neurosci., 12, 353 (2018), https://doi.org/10.3389/fnins.2018.00353.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kleih, S. C., Gottschalt, L., Teichlein, E., and Weilbach, F. X., “Toward a P300 based brain–computer interface for aphasia rehabilitation after stroke: Presentation of theoretical considerations and a pilot feasibility study,” Front. Hum. Neurosci., 10, 547 (2016), https://doi.org/10.3389/fnhum.2016.00547.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Musso, M., Hübner, D., Schwarzkopf, S., et al., “Aphasia recovery by language training using a brain–computer interface: a proof-of-concept study,” Brain Commun., 4, No. 1, fcac008 (2022), https://doi.org/10.1093/braincomms/fcac008.

  46. Wu, Q., Ge, Y., Ma, D., et al., “Analysis of prognostic risk factors determining poor functional recovery after comprehensive rehabilitation including motor-imagery brain–computer interface training in stroke patients: A Prospective Study,” Front. Neurol., 12, 661816 (2021), https://doi.org/10.3389/fneur.2021.661816.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mane, R., Wu, Z., and Wang, D., “Poststroke motor, cognitive and speech rehabilitation with brain–computer interface: a perspective review,” Stroke Vasc. Neurol., svn-2022-001506 (2022), Epub ahead of print, https://doi.org/10.1136/svn-2022-001506.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kotov.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 12, Iss. 2, pp. 60–66, December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, V.A., Isakova, E.V. & Kotov, S.V. Potential of a Brain–Computer Interface for Correcting Poststroke Cognitive Impairments. Neurosci Behav Physi 53, 988–993 (2023). https://doi.org/10.1007/s11055-023-01492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01492-8

Keywords

Navigation