Skip to main content

Advertisement

Log in

Mechanisms of Neurodegeneration in Multiple Sclerosis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), which leads to the formation of foci of primary demyelination in the white and gray matter and diffuse damage to axons and neurons. Despite significant progress in the development of drugs for relapsing-remitting MS, the impact on the progression of the disease remains insufficient. Diffuse and compartmentalized lymphocyte and macrophage infiltration of CNS tissue inhibits the differentiation of myelinating mature oligodendrocytes and disrupts remyelination processes. Chronic inflammation, which occurs when the blood–brain barrier (BBB) is intact, activates microglia, increasing axon and neuron damage and, as a result, triggers chronic oxidative stress and histotoxic hypoxia. It is currently important to clarify the mechanisms underlying neurodegeneration, which in the later stages of MS is caused by chronic neuroaxonal damage and impairment of regenerative capabilities and which largely determines disease outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lassmann, W. Brück, and C. Lucchinetti, “The immunopathology of multiple sclerosis: an overview,” Brain Pathol., 17, No. 2, 210–218 (2007), https://doi.org/10.1111/j.1750-3639.2007.00064.x.

    Article  PubMed  PubMed Central  Google Scholar 

  2. M. Adamczyk-Sowa, B. Adamczyk, A. Kułakowska, et al., “Secondary progressive multiple sclerosis – from neuropathology to definition and effective treatment,” Neurol. Neurochir. Pol., 54, No. 5, 384–398 (2020), https://doi.org/10.5603/PJNNS.a2020.0082.

    Article  PubMed  Google Scholar 

  3. B. Weinshenker, D. Reich, C. Lucchinetti, et al., “The natural history of multiple sclerosis: a geographically based study,” New Engl. J. Med., 378, 169–180 (2018), https://doi.org/10.1093/brain/112.1.133.

    Article  Google Scholar 

  4. F. D. Lublin, S. C. Reingold, J. A. Cohen, et al., “Defining the clinical course of multiple sclerosis: the 2013 revisions,” Neurology, 83, No. 3, 278–286 (2014), https://doi.org/10.1212/WNL.0000000000000560.

    Article  PubMed  PubMed Central  Google Scholar 

  5. R. Hohlfeld, K. Dornmair, E. Meinl, et al., “The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets,” Lancet Neurol., 15, No. 2, 198–209 (2016), https://doi.org/10.1016/S1474-4422(15)00334-8.

    Article  CAS  PubMed  Google Scholar 

  6. B. D. Trapp and K. Nave, “Multiple sclerosis: an immune or neurodegenerative disorder?,” Annu. Rev. Neurosci., 31, 247–269 (2008), https://doi.org/10.1146/annurev.neuro.30.051606.094313.

    Article  CAS  PubMed  Google Scholar 

  7. P. Stys, G. Zamponi, J. van Minnen, et al., “Will the real multiple sclerosis please stand up?” Nat. Rev. Neurosci., 13, No. 7, 507–514 (2012), https://doi.org/10.1038/nrn3275.

    Article  CAS  PubMed  Google Scholar 

  8. C. Confavreux and S. Vukusi, “Natural history of multiple sclerosis: a unifying concept,” Brain, 129, No. 3, 606–616 (2006), https://doi.org/10.1093/brain/awl007.

    Article  PubMed  Google Scholar 

  9. M. Novotna, M. Paz Soldán, N. Abou Zeid, et al., “Poor early relapse recovery affects onset of progressive disease course in multiple sclerosis,” Neurology, 85, No. 8, 722–729 (2015), https://doi.org/10.1212/WNL.0000000000001856.

    Article  PubMed  PubMed Central  Google Scholar 

  10. A. Scalfari, A. Neuhaus, A. Degenhard, et al., “The natural history of multiple sclerosis: a geographically based study 10,” Brain, 133, No. 7, 1914–1929 (2010), https://doi.org/10.1093/brain/awq118.

    Article  PubMed  PubMed Central  Google Scholar 

  11. H. Yong and V. W. Yong, “Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis,” Nat. Rev. Neurol., 18, No. 1, 40–55 (2022), https://doi.org/10.1038/s41582-021-00581-x.

    Article  CAS  PubMed  Google Scholar 

  12. M. Sádaba, J. Tzartos, C. Paíno, et al., “Axonal and oligodendrocytelocalized IgM and IgG deposits in MS lesions,” J. Neuroimmunol., 247, No. 1–2, 86–94 (2012), https://doi.org/10.1016/j.jneuroim.2012.03.020.

    Article  CAS  PubMed  Google Scholar 

  13. T. Kuhlmann, S. Ludwin, A. Prat, et al., “An updated histological classification system for multiple sclerosis lesions,” Acta Neuropathol., 133, No. 1, 13–24 (2017), https://doi.org/10.1007/s00401-016-1653-y.

    Article  CAS  PubMed  Google Scholar 

  14. J. Frischer, S. Weigand, Y. Guo, et al., “Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque,” Ann. Neurol., 78, No. 5, 710–721 (2015), https://doi.org/10.1002/ana.24497.

    Article  PubMed  PubMed Central  Google Scholar 

  15. D. H. Mahad, B. D. Trapp, and H. Lassmann, “Pathological mechanisms in progressive multiple sclerosis,” Lancet Neurology, 14, No. 2, 183–193 (2015), https://doi.org/10.1016/S1474-4422(14)70256-X.

    Article  CAS  PubMed  Google Scholar 

  16. S. L. Hauser and J. R. Oksenberg, “The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration,” Neuron, 52, No. 1, 61–76 (2006), https://doi.org/10.1016/j.neuron.2006.09.011.

    Article  CAS  PubMed  Google Scholar 

  17. H. Kebir, K. Kreymborg, I. Ifergan, et al., “Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation,” Nat. Med., 13, No. 10, 1173–1175 (2007), https://doi.org/10.1038/nm1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. G. P. van Nierop, M. M. van Luijn, S. S. Michels, et al., “Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients,” Acta Neuropathol., 134, No. 3, 383–401 (2017), https://doi.org/10.1007/s00401-017-1744-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. T. Mockus, A. Munie, J. Atkinson, et al., “Encephalitogenic and regulatory CD8 T cells in multiple sclerosis and its animal models,” J. Immunol., 206, No. 1, 3–10 (2021), https://doi.org/10.4049/jimmunol.2000797.

    Article  CAS  PubMed  Google Scholar 

  20. S. Na, A. Hermann, M. Sanchez-Ruiz, et al., “Oligodendrocytes enforce immune tolerance of the uninfected brain by purging the peripheral repertoire of autoreactive CD8+ T cells,” Immunity, 37, No. 1, 134–146 (2012), https://doi.org/10.1016/j.immuni.2012.04.009.

    Article  CAS  PubMed  Google Scholar 

  21. H. Neumann, I. Medana, J. Bauer, et al., “Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases,” Trends Neurosci., 25, No. 6, 313–319 (2002), https://doi.org/10.1016/s0166-2236(02)02154-9.

    Article  CAS  PubMed  Google Scholar 

  22. J. Tzartos, M. Friese, M. Craner, et al., “Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis,” Am. J. Pathol., 172, No. 1, 146–155 (2008), https://doi.org/10.2353/ajpath.2008.070690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. R. Lisak, J. Benjamins, L. Nedelkoska, et al., “Secretory products of multiple sclerosis B cells cytotoxic to oligodendroglia in vitro,” J. Neuroimmunol., 246, No. 1–2, 85–95 (2012), https://doi.org/10.1016/j.jneuroim.2012.02.015.

    Article  CAS  PubMed  Google Scholar 

  24. J. Machado-Santos, E. Saji, A. Tröscher, et al., “The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells,” Brain, 141, No. 7, 2066–2082 (2018), https://doi.org/10.1093/brain/awy151.

    Article  PubMed  PubMed Central  Google Scholar 

  25. A. A. Abramova, I. V. Zakroyshchikova, I. A. Krotenkova, et al., “Leptomeningeal B-cell follicles in multiple sclerosis: a role in the pathogenesis and prognostic value,” Zh. Nevrol. Psikhiat., 119, No. 10, Part 2, 21–27 (2019), https://doi.org/10.17116/jnevro20191191021.

  26. D. M. Harrison, K. Wang, J. Fiol, et al., “Leptomeningeal enhancement at 7T in multiple sclerosis: Frequency, morphology, and relationship to cortical volume,” J. Neuroimaging, 27, No. 5, 461–468 (2017), https://doi.org/10.1111/jon.12444.

    Article  PubMed  PubMed Central  Google Scholar 

  27. H. Lassmann, “Pathogenic mechanisms associated with different clinical courses of multiple sclerosis,” Front. Immunol., 9, 3116–3119 (2019), https://doi.org/10.3389/fimmu.2018.03116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. R. Magliozzi, O. Howell, A. Vora, et al., “Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology,” Brain, 130, No. 4, 1089–1104 (2007), https://doi.org/10.1093/brain/awm038.

    Article  PubMed  Google Scholar 

  29. O. W. Howell, C. A. Reeves, R. Nicholas, et al., “Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis,” Brain, 134, No. 9, 2755–2771 (2011), https://doi.org/10.1093/brain/awr182.

    Article  PubMed  Google Scholar 

  30. F. Aloisi, B. Serafini, R. Magliozzi, et al., “Detection of Epstein–Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look,” Brain, 133, No. 12, e157 (2010), https://doi.org/10.1093/brain/awr221.

    Article  PubMed  Google Scholar 

  31. B. Serafini, B. Rosicarelli, R. Magliozzi, et al., “Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis,” Brain Pathol., 14, 164–174 (2004), https://doi.org/10.1111/j.1750-3639.2004.tb00049.x.

    Article  PubMed  Google Scholar 

  32. M. Mitsdoerffer and A. Peters, “Tertiary lymphoid organs in central nervous system autoimmunity,” Front. Immunol., 7, 451 (2016), https://doi.org/10.3389/fimmu.2016.00451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C. Veroni, B. Serafini, B. Rosicarelli, et al., “Transcriptional profile and Epstein Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis,” J. Neuroinflammation, 15, 18 (2018), https://doi.org/10.1186/s12974-017-1049-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Ascherio and K. Munger, “Epidemiology of multiple sclerosis: From risk factors to prevention-an update,” Semin. Neurol., 36, No. 2, 103–114 (2016), https://doi.org/10.1055/s-0036-1579693.

    Article  PubMed  Google Scholar 

  35. C. Reali, R. Magliozzi, F. Roncaroli, et al., “B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis,” Brain Pathol., 30, No. 4, 779–793 (2020), https://doi.org/10.1111/bpa.12841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Choi, O. Howell, D. Carassiti, et al., “Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis,” Brain, 135, No. 10, 2925–2937 (2012), https://doi.org/10.1093/brain/aws189.

    Article  PubMed  Google Scholar 

  37. M. Calabrese, F. Agosta, F. Rinaldi, et al., “Cortical lesions and atrophy associated with cognitive impairment in multiple sclerosis,” Arch. Neurol., 66, No. 9, 1144–1150 (2009), https://doi.org/10.1001/archneurol.2009.174.

    Article  PubMed  Google Scholar 

  38. L. Bø, C. Vedeler, H. Nyland, et al., “Subpial demyelination in the cerebral cortex of multiple sclerosis patients,” J. Neuropathol. Exp. Neurol., 62, No. 7, 723–732 (2003), https://doi.org/10.1093/jnen/62.7.723.

    Article  PubMed  Google Scholar 

  39. D. Harrison, S. Roy, J. Oh, et al., “Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis,” JAMA Neurol., 72, No. 9, 1004–1012 (2015), https://doi.org/10.1001/jamaneurol.2015.1241.

    Article  PubMed  PubMed Central  Google Scholar 

  40. A. Kutzelnigg, C. Lucchinetti, C. Stadelmann, et al., “Cortical demyelination and diffuse white matter injury in multiple sclerosis,” Brain, 128, No. 11, 2705–2712 (2005), https://doi.org/10.1093/brain/awh641.

    Article  PubMed  Google Scholar 

  41. C. F. Lucchinetti, B. F. Popescu, R. F. Bunyan, et al., “Inflammatory cortical demyelination in early multiple sclerosis,” New Engl. J. Med., 365, 2188–2197 (2011), https://doi.org/10.1056/NEJMoa1100648.

    Article  CAS  PubMed  Google Scholar 

  42. K. Blauth, J. Soltys, A. Matschulat, et al., “Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants,” Acta Neuropathol., 130, No. 6, 765–781 (2015), https://doi.org/10.1007/s00401-015-1500-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. R. Chu, S. Hurwitz, S. Tauhid, et al., “Automated segmentation of cerebral deep gray matter from MRI scans: effect of field strength on sensitivity and reliability,” BMC Neurol., 17, No. 1, 172 (2017), https://doi.org/10.1186/s12883-017-0949-4.

    Article  PubMed  PubMed Central  Google Scholar 

  44. L. Haider, C. Simeonidou, G. Steinberger, et al., “Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron,” J. Neurol. Neurosurg. Psychiatr., 85, No. 12, 1386–1395 (2014), https://doi.org/10.1136/jnnp-2014-307712.

    Article  Google Scholar 

  45. K. Nave and H. Werner, “Myelination of the nervous system: mechanisms and functions,” Annu. Rev. Cell. Dev. Biol., 30, 503–533 (2014), https://doi.org/10.1146/annurev-cellbio-100913-013101.

    Article  CAS  PubMed  Google Scholar 

  46. R. Franklin and S. Goldman, “Glia disease and repair-remyelination,” Cold Spring Harb. Perspect. Biol., 7, No. 7, a020594 (2015), https://doi.org/10.1101/cshperspect.a020594.

    Article  PubMed  PubMed Central  Google Scholar 

  47. S. Mitew, C. Hay, H. Peckham, et al., “Mechanisms regulating the development of oligodendrocytes and central nervous system myelin,” Neurosci., 276, 29–47 (2014), https://doi.org/10.1016/j.neuroscience.2013.11.029.

    Article  CAS  Google Scholar 

  48. L. Clarke, K. Young, N. Hamilton, et al., “Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse,” J. Neurosci., 32, 8173–8185 (2012), https://doi.org/10.1523/jneurosci.0928-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. D. McTigue, P. Wei, and B. Stokes, “Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord,” J. Neurosci., 21, No. 10, 3392–3400 (2001), https://doi.org/10.1523/JNEUROSCI.21-10-03392.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. F. Birey, M. Kloc, M. Chavali, et al., “Genetic and Stress-induced loss of NG2 glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2,” Neuron, 88, No. 5, 941–956 (2015), https://doi.org/10.1016/j.neuron.2015.10.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. E. Hughes, S. Kang, M. Fukaya, et al., “Oligodendrocyte progenitors balance growth self-repulsion to achieve homeostasis adult brain,” Nat. Neurosci., 16, No. 6, 668–676 (2013), https://doi.org/10.1038/nn.3390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M. Zawadzka, L. Rivers, S. Fancy, et al., “CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination,” Cell Stem Cell, 6, No. 6, 578–590 (2010), https://doi.org/10.1016/j.stem.2010.04.002.

    Article  CAS  PubMed  Google Scholar 

  53. T. Kuhlmann, V. Miron, Q. Cui, et al., “Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis,” Brain, 131, No. 7, 1749–1758 (2008), https://doi.org/10.1093/brain/awn096.

    Article  CAS  PubMed  Google Scholar 

  54. A. Foote and F. Blakemore, “Inflammation stimulates remyelination in areas of chronic demyelination,” Brain, 128, No. 3, 528–539 (2005), https://doi.org/10.1093/brain/awh417.

    Article  CAS  PubMed  Google Scholar 

  55. S. Mi, R. Miller, W. Tang, et al., “Promotion of central nervous system remyelination by differentiation of oligodendrocyte precursor cells,” Ann. Neurol., 65, No. 3, 304–315 (2009), https://doi.org/10.1002/ana.21581.

    Article  CAS  PubMed  Google Scholar 

  56. P. Patrikios, C. Stadelmann, A. Kutzelnigg, et al., “Remyelination is extensive in a subset of multiple sclerosis patients,” Brain, 129, No. 12, 3165–3172 (2006), https://doi.org/10.1093/brain/awl217.

    Article  PubMed  Google Scholar 

  57. E. D. Ponomarev, L. P. Shriver, K. Maresz, et al., “Microglial cell activation and proliferation precedes the onset of CNS autoimmunity,” J. Neurosci. Res., 81, No. 3, 374–389 (2005), https://doi.org/10.1002/jnr.20488.

    Article  CAS  PubMed  Google Scholar 

  58. J. Xue, S. Schmidt, J. Sander, et al., “Transcriptome-based network analysis reveals a spectrum model of human macrophage activation,” Immunity, 40, No. 2, 274–288 (2014), https://doi.org/10.1016/j.immuni.2014.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. E. Benveniste, “Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis,” J. Mol. Med. (Berl.), 75, No. 3, 165–173 (1997), https://doi.org/10.1007/s001090050101.

    Article  CAS  PubMed  Google Scholar 

  60. E. Frohman, M. Racke, and C. Raine, “Multiple sclerosis – the plaque and its pathogenesis,” New Engl. J. Med., 354, No. 9, 942–955 (2006), https://doi.org/10.1056/NEJMra052130.

    Article  CAS  PubMed  Google Scholar 

  61. M. Prinz and J. Priller, “Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease,” Nat. Rev. Neurosci., 15, No. 5, 300–312 (2014), 10.1038nrn3722.

  62. E. Miller, B. Wachowicz, and I. Majsterek, “Advances in antioxidative therapy of multiple sclerosis,” Curr. Med. Chem., 20, No. 37, 4720–4730 (2013), https://doi.org/10.2174/09298673113209990156.

  63. M. Fischer, R. Sharma, J. Lim, et al., “NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage,” Brain, 135, No. 3, 886–899 (2012), https://doi.org/10.1093/brain/aws012.

    Article  PubMed  PubMed Central  Google Scholar 

  64. L. Haider, M. Fischer, J. Frischer, et al., “Oxidative damage in multiple sclerosis lesions,” Brain, 134, No. 7, 1914–1924 (2011), https://doi.org/10.1093/brain/awr128.

    Article  PubMed  PubMed Central  Google Scholar 

  65. J. Correale and M. Farez, “The Role of astrocytes in multiple sclerosis progression,” Front. Neurol., 6, 180 (2015), https://doi.org/10.3389/fneur.2015.00180.

    Article  PubMed  PubMed Central  Google Scholar 

  66. A. Argaw, L. Asp, J. Zhang, et al., “Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease,” J. Clin. Invest., 122, No. 7, 2454–2468 (2012), https://doi.org/10.1172/JCI60842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. M. Gimenez, J. Sim, and J. Russell, “TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to inflammation,” J. Neuroimmunol., 151, No. 1–2, 116–125 (2004), https://doi.org/10.1016/j.jneuroim.2004.02.012.

    Article  CAS  PubMed  Google Scholar 

  68. Y. Wang, X. Cheng, Q. He, et al., “Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins,” J. Neurosci., 31, No. 16, 6053–6058 (2011), https://doi.org/10.1523/JNEUROSCI.5524-09.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. K. Omari, G. John, S. Sealfon, et al., “CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis,” Brain, 128, No. 5, 1003–1015 (2005), https://doi.org/10.1093/brain/awh479.

    Article  PubMed  Google Scholar 

  70. C. Luo, C. Jian, Y. Liao, et al., “The role of microglia in multiple sclerosis,” Neuropsychiatr. Dis. Treat., 13, 1661–1667 (2017), https://doi.org/10.2147/NDT.S140634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. K. Smith, R. Kapoor, and P. Felts, “Demyelination: the role of reactive oxygen and nitrogen species,” Brain Pathol., 9, No. 1, 69–92 (1999), https://doi.org/10.1111/j.1750-3639.1999.tb00212.x.

    Article  CAS  PubMed  Google Scholar 

  72. O. Bizzozero, G. DeJesus, K. Callahan, et al., “Elevated protein carbonylation in brain white and gray matter patients multiple sclerosis,” J. Neurosci. Res., 81, No. 5, 687–695 (2005), https://doi.org/10.1002/jnr.20587.

    Article  CAS  PubMed  Google Scholar 

  73. B. Butts, C. Houde, and H. Mehmet, “Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease,” Cell Death Differ., 15, No. 7, 1178–1186 (2008), https://doi.org/10.1038/cdd.2008.70.

    Article  CAS  PubMed  Google Scholar 

  74. K. Blomgren and H. Hagberg, “Free radicals, mitochondria, and hypoxia-ischemia in the developing brain,” Free Radic. Biol. Med., 40, No. 3, 388–397 (2006), https://doi.org/10.1016/j.freeradbiomed.2005.08.040.

    Article  CAS  PubMed  Google Scholar 

  75. B. Trapp and P. Stys, “Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis,” Lancet Neurol., 8, No. 3, 280–291 (2009), https://doi.org/10.1016/S1474-4422(09)70043-2.

    Article  CAS  PubMed  Google Scholar 

  76. N. Lee, S. Ha, P. Sati, et al., “Potential role of iron in repair of inflammatory demyelinating lesions,” J. Clin. Invest., 129, No. 10, 4365–4376 (2019), https://doi.org/10.1172/JCI126809.

    Article  PubMed  PubMed Central  Google Scholar 

  77. S. Cronin, C. Woolf, G. Weiss, et al., “The role of iron regulation in immunometabolism and immune-related disease,” Front. Mol. Biosci., 6, 116–120 (2019), https://doi.org/10.3389/fmolb.2019.00116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. P. Urrutia, P. Aguirre, A. Esparza, et al., “Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells,” J. Neurochem., 126, No. 4, 541–549 (2013), https://doi.org/10.1111/jnc.12244.

    Article  CAS  PubMed  Google Scholar 

  79. S. Hametner, I. Wimmer, L. Haider, et al., “Iron and neurodegeneration in the multiple sclerosis brain,” Ann. Neurol., 74, No. 6, 848–861 (2013), https://doi.org/10.1002/ana.23974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. F. Bagnato, S. Hametner, B. Yao, et al., “Tracking iron in multiple sclerosis: a combined study at 7 Tesla,” Brain, 134, No. 12, 3602–3615 (2011), https://doi.org/10.1093/brain/awr278.

    Article  PubMed  Google Scholar 

  81. M. Filippi, W. Brück, D. Chard, et al., attendees of the Correlation between Pathological and MRI findings in MS workshop (2019), “Association between pathological and MRI findings in multiple sclerosis,” Lancet Neurol., 18, No. 2, 198–210 (2019), https://doi.org/10.1016/S1474-4422(18)30451-4.

  82. A. Dal-Bianco, G. Grabner, C. Kronnerwetter, et al., “Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI,” Brain, 144, No. 3, 833–847 (2021), https://doi.org/10.1093/brain/awaa436.

    Article  PubMed  Google Scholar 

  83. A. Elkady, D. Cobzas, H. Sun, et al., “Progressive iron accumulation across multiple sclerosis phenotypes classification of deep gray matter,” J. Magn. Reson. Imaging, 46, No. 5, 1464–1473 (2017), https://doi.org/10.1002/jmri.25682.

    Article  PubMed  Google Scholar 

  84. N. Bergsland, E. Tavazzi, M. Laganà, et al., “White matter tract injury is associated with deep gray matter iron deposition in multiple sclerosis,” J. Neuroimaging, 27, No. 1, 107–113 (2017), https://doi.org/10.1111/jon.12364.

    Article  PubMed  Google Scholar 

  85. R. Zivadinov, E. Tavazzi, N. Bergsland, et al., “Brain iron at quantitative MRI is associated with disability in multiple sclerosis,” Radiology, 289, No. 2, 487–496 (2018), https://doi.org/10.1148/radiol.2018180136.

    Article  PubMed  Google Scholar 

  86. H. Wiendl, R. Gold, T. Berger, et al., “Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper),” Ther. Adv. Neurol. Disord., 14, 17562864211039648 (2021), https://doi.org/10.1177/17562864211039648.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Eliseeva.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 7, Iss. 2, pp. 5–13, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliseeva, D.D., Zakharova, M.N. Mechanisms of Neurodegeneration in Multiple Sclerosis. Neurosci Behav Physi 53, 324–332 (2023). https://doi.org/10.1007/s11055-023-01429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01429-1

Keywords

Navigation