Skip to main content

Advertisement

Log in

The Role of Alleles with Intermediate Numbers of Trinucleotide Repeats in Parkinson’s Disease and Other Neurodegenerative Diseases

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Genetic factors underlie the pathological processes responsible for the manifestations of a wide range of neurodegenerative diseases. The expansion of unstable trinucleotide repeats forms pathological alleles that lead to the development of monogenic neurological diseases (Huntington’s disease, Kennedy’s disease, spinocerebellar ataxia, etc.). However, data have recently appeared on the role of alleles with intermediate numbers of these repeats in the formation of the clinical features of multifactorial neurological phenotypes (Parkinson’s disease, Alzheimer’s disease). This article summarizes data on current concepts of the role of the “intermediate” allele, mainly of the huntingtin gene (HTT), in the pathogenesis and clinical picture of neurodegenerative diseases, primarily Parkinson’s disease. The issue of the need to develop a special tactic for managing individual carriers of the “intermediate” allele by teams of highly qualified specialists in neurology and genetics is also discussed, as this would allow neurodegenerative diseases to be diagnosed early and medical genetic counseling of families to be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Hannan, “Tandem repeats and repeatomes: Delving deeper into the ‘dark matter’ of genomes,” EBioMedicine, 31, 3–4 (2018), https://doi.org/10.1016/j.ebiom.2018.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  2. A. J. Hannan, “Tandem repeat polymorphisms: Mediators of genetic plasticity, modulators of biological diversity and dynamic sources of disease susceptibility,” Adv. Exp. Med. Biol., 769, 1–9 (2012).

    CAS  PubMed  Google Scholar 

  3. C. M. Rodriguez and P. K. Todd, “New pathologic mechanisms in nucleotide repeat expansion disorders,” Neurobiol. Dis., 130, 104515 (2019), https://doi.org/10.1016/j.nbd.2019.104515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. Paulson, “Repeat expansion diseases,” Handb. Clin. Neurol., 147, 105–123 (2018), https://doi.org/10.1016/B978-0-444-63233-3.00009-9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. S. L. Gardiner, M. W. Boogaard, S. Trompet, et al., “Prevalence of carriers of intermediate and pathological polyglutamine disease-associated alleles among large population-based cohorts,” JAMA Neurol., 76, No. 6, 650–656 (2019), https://doi.org/10.1001/jamaneurol.2019.0423.

    Article  PubMed  Google Scholar 

  6. G. P. Bates, R. Dorsey, J. F. Gusella, et al., “Huntington disease,” Nat. Rev. Dis. Primers, 1, 15005 (2015), https://doi.org/10.1038/nrdp.2015.5.

    Article  PubMed  Google Scholar 

  7. A. Killoran, K. M. Biglan, J. Jankovic, et al., “Characterization of the Huntington intermediate CAG repeat expansion phenotype in PHAROS,” Neurology, 80, No. 22, 2022–2027 (2013), https://doi.org/10.1212/WNL.0b013e318294b304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. P. Hogarth, “Huntington disease: How many repeats does it take?” Neurology, 80, No. 22, e241–243 (2013), https://doi.org/10.1212/WNL.0b013e3182984b31.

    Article  PubMed  Google Scholar 

  9. M. Menéndez-González, J. Clarimón, I. Rosas-Allende, et al., “HTT gene intermediate alleles in neurodegeneration: evidence for association with Alzheimer’s disease,” Neurobiol. Aging, 76, 215.e9–215.e14 (2019), https://doi.org/10.1016/j.neurobiolaging.2018.11.014.

    Article  CAS  PubMed  Google Scholar 

  10. I. Rosas, C. Martínez, J. Clarimón, et al., “Role for ATXN1, ATXN2, and HTT intermediate repeats in frontotemporal dementia and Alzheimer’s disease,” Neurobiol. Aging, 87, 139.e1–139.e7 (2020), https://doi.org/10.1016/j.neurobiolaging.2019.10.017.

    Article  CAS  Google Scholar 

  11. V. Bessi, S. Mazzeo, S. Bagnoli, et al., “The effect of CAG repeats within the non-pathological range in the HTT gene on cognitive functions in patients with subjective cognitive decline and mild cognitive impairment,” Diagnostics (Basel), 11, No. 6, 1051 (2021), https://doi.org/10.3390/diagnostics11061051.

    Article  CAS  PubMed  Google Scholar 

  12. J. K. Lee, Y. Ding, A. L. Conrad, et al., “Sex-specific effects of the Huntington gene on normal neurodevelopment,” J. Neurosci. Res., 95, No. 1–2, 398–408 (2017), https://doi.org/10.1002/jnr.23980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Mühlau, J. Winkelmann, D. Rujescu, et al., “Variation within the Huntington’s disease gene infl uences normal brain structure,” PLoS One, 7, No. 1, e29809 (2012), https://doi.org/10.1371/journal.pone.0029809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. V. Bessi, S. Mazzeo, S. Bagnoli, et al., “The implication of BDNF Val66Met polymorphism in progression from subjective cognitive decline to mild cognitive impairment and Alzheimer’s disease: a 9-year follow-up study,” Eur. Arch. Psychiatry Clin. Neurosci., 270, No. 4, 471–482 (2020), https://doi.org/10.1007/s00406-019-01069-y.

    Article  PubMed  Google Scholar 

  15. P. A. Ong, F. R. Annisafitrie, N. Purnamasari, et al., “dementia prevalence, comorbidities, and lifestyle among Jatinangor elders,” Front. Neurol., 12, 643480 (2021), https://doi.org/10.3389/fneur.2021.643480.

    Article  PubMed  PubMed Central  Google Scholar 

  16. A. J. Hannan, “Tandem repeats mediating genetic plasticity in health and disease,” Nat. Rev. Genet., 19, No. 5, 286–298 (2018), https://doi.org/10.1038/nrg.2017.115.

    Article  CAS  PubMed  Google Scholar 

  17. V. Zabnenkova, O. A. Schagina, N. M. Galeeva, et al., “HTT gene premutation allele frequencies in the Russian Federation,” Russ. J. Genet., 54, 732–739 (2018), https://doi.org/10.1134/S1022795418060169.

    Article  CAS  Google Scholar 

  18. A. J. Semaka, Genetic Counselling Implications for Intermediate Allele Predictive Test Results for Huntington Disease, University of British Columbia (2012), https://open.library.ubc.ca/collections/ubctheses/24/items/1.0071843.

    Google Scholar 

  19. M. I. Alvarez-Mora, I. Madrigal, F. Martinez, et al., “Clinical implication of FMR1 intermediate alleles in a Spanish population,” Clin. Genet., 94, No. 1, 153–158 (2018), https://doi.org/10.1111/cge.13257.

    Article  CAS  PubMed  Google Scholar 

  20. H. L. Paulson, V. G. Shakkottai, H. B. Clark, and H. T. Orr, “Polyglutamine spinocerebellar ataxias – from genes to potential treatments,” Nat. Rev. Neurosci., 18, No. 10, 613–626 (2017), https://doi.org/10.1038/nrn.2017.92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Lattante, M. G. Pomponi, A. Conte, et al., “ATXN1 intermediatelength polyglutamine expansions are associated with amyotrophic lateral sclerosis,” Neurobiol. Aging, 64, 157.e1–157.e5 (2018), https://doi.org/10.1016/j.neurobiolaging.2017.11.011.

    Article  CAS  Google Scholar 

  22. P. Van Damme, J. H. Veldink, M. van Blitterswijk, et al., “Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2,” Neurology, 76, No. 24, 2066–2072 (2011), https://doi.org/10.1212/WNL.0b013e31821f445b.

    Article  CAS  PubMed  Google Scholar 

  23. T. Lee, Y. R. Li, A. Chesi, et al., “Evaluating the prevalence of polyglutamine repeat expansions in amyotrophic lateral sclerosis,” Neurology, 76, No. 24, 2062–2065 (2011), https://doi.org/10.1212/WNL.0b013e31821f4447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. L. Choubtum, P. Witoonpanich, K. Kulkantrakorn, et al., “Trinucleotide repeat expansion of TATA-binding protein gene associated with Parkinson’s disease: A Thai multicenter study,” Parkins. Relat. Disord., 28, 146–149 (2016), https://doi.org/10.1016/j.parkreldis.2016.05.008.

    Article  Google Scholar 

  25. M. B. Hammer and A. B. Singleton, “Common premutations in the general population,” JAMA Neurol., 76, No. 6, 639–640 (2019), https://doi.org/10.1001/jamaneurol.2019.0216.

    Article  PubMed  Google Scholar 

  26. D. Z. Loesch, M. S. Khaniani, H. R. Slater, et al., “Small CGG repeat expansion alleles of FMR1 gene are associated with parkinsonism,” Clin. Genet., 76, No. 5, 471–476 (2009), Epub Sep. 30, 2009, PMCID: PMC2888465, PMID: 19796183, https://doi.org/10.1111/j.1399-0004.2009.01275.x.

  27. M. W. Kurz, A. M. Schlitter, Y. Klenk, et al., “FMR1 alleles in Parkinson’s disease: relation to cognitive decline and hallucinations, a longitudinal study,” J. Geriatr. Psychiatry Neurol., 20, No. 2, 89–92 (2007), https://doi.org/10.1177/0891988706297737.

    Article  PubMed  Google Scholar 

  28. D. Z. Loesch, F. Tassone, G. D. Mellick, et al., “Evidence for the role of FMR1 gray zone alleles as a risk factor for parkinsonism in females,” Mov. Disord., 33, No. 7, 1178–1181 (2018), PMCID: PMC6116531, PMID: 30153395, https://doi.org/10.1002/mds.27420.

  29. D. A. Hall, “In the gray zone in the fragile X gene: What are the key unanswered clinical and biological questions?”. Tremor Other Hyperkinet Mov (NY), 4, 208 (2014), https://doi.org/10.7916/D8NG4NP3.

    Article  Google Scholar 

  30. L. N. Clark, X. Ye, X. Liu, and E. D. Louis, “Genetic analysis of FMR1 repeat expansion in essential tremor,” Neurosci. Lett., 593, 114–117 (2015), https://doi.org/10.1016/j.neulet.2015.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P. J. Morrison and J. Benito-León, “Neurologic features in intermediate allele carriers of Huntington disease,” Neurology, 87, No. 6, 556–557 (2016), https://doi.org/10.1212/WNL.0000000000002958.

    Article  PubMed  Google Scholar 

  32. M. van Hagen, D. G. E. Piebes, W. C. de Leeuw, et al., “The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model,” BMC Genomics, 18, No. 1, 373 (2017), https://doi.org/10.1186/s12864-017-3745-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C. Marques Sousa and S. Humbert, “Huntingtin: here, there, everywhere!,” J. Huntingtons Dis., 2, No. 4, 395–403 (2013), https://doi.org/10.3233/JHD-130082.

    Article  PubMed  Google Scholar 

  34. D. Rigamonti, J. H. Bauer, C. De-Fraja, et al., “Wild-type huntingtin protects from apoptosis upstream of caspase-3,” J. Neurosci., 20, No. 10, 3705–3713 (2000), https://doi.org/10.1523/JNEUROSCI.20-10-03705.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. H. Schaefer, E. E. Wanker, and M. A. Andrade-Navarro, “Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks,” Nucleic Acids Res., 40, No. 10, 4273–4287 (2012), https://doi.org/10.1093/nar/gks011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. F. Sampedro, S. Martinez-Horta, J. Pérez-Pérez, et al., “Interaction between sex and neurofilament light chain on brain structure and clinical severity in Huntington’s disease,” Ann. Clin. Transl. Neurol., 8, No. 12, 2309–2313 (2021), https://doi.org/10.1002/acn3.51460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Riccardi, F. Napolitano, D. Montesarchio, et al., “Nanoparticleguided brain drug delivery: Expanding the therapeutic approach to neurodegenerative diseases,” Pharmaceutics, 13, No. 11, 1897 (2021), https://doi.org/10.3390/pharmaceutics13111897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D. Savitt and J. Jankovic, “Clinical phenotype in carriers of intermediate alleles in the huntingtin gene,” J. Neurol. Sci., 402, 57–61 (2019), https://doi.org/10.1016/j.jns.2019.05.010.

    Article  CAS  PubMed  Google Scholar 

  39. C. M. Testa and J. Jankovic, “Huntington disease: A quarter century of progress since the gene discovery,” J. Neurol. Sci., 396, 52–68 (2019), https://doi.org/10.1016/j.jns.2018.09.022.

    Article  CAS  PubMed  Google Scholar 

  40. N. R. Downing, S. Lourens, I. De Soriano, et al. “Phenotype characterization of HD intermediate alleles in PREDICT-HD,” J. Huntingtons Dis., 5, No. 4, 357–368 (2016), https://doi.org/10.3233/JHD-160185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huntington Study Group PHAROS Investigators, K. M. Biglan, I. Shoulson, et al., “Clinical-genetic associations in the Prospective Huntington at Risk Observational Study (PHAROS, implications for clinical trials,” JAMA Neurol., 73, No. 1, 102-10 (2016), PMID: 26569098, https://doi.org/10.1001/jamaneurol.2015.2736.

  42. A. D. Ha, C. A. Beck, and J. Jankovic, “Intermediate CAG repeats in Huntington’s disease: Analysis of COHORT,” Tremor Other Hyperkinet. Mov. (NY), 2, tre-02-64-287-4 (2012), https://doi.org/10.7916/D8FF3R2P.

    Article  Google Scholar 

  43. M. Leija-Salazar, C. Piette, and C. Proukakis, “Review: Somatic mutations in neurodegeneration,” Neuropathol. Appl. Neurobiol., 44, No. 3, 267–285 (2018), https://doi.org/10.1111/nan.12465.

    Article  CAS  PubMed  Google Scholar 

  44. D. Falush, E. W. Almqvist, R. R. Brinkmann, et al., “Measurement of mutational fl ow implies both a high new-mutation rate for Huntington disease and substantial underascertainment of late-onset cases,” Am. J. Hum. Genet., 68, No. 2, 373–385 (2001), https://doi.org/10.1086/318193.

    Article  CAS  PubMed  Google Scholar 

  45. C. Kay, J. A. Collins, G. E. B. Wright, et al., “The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population,” Am J. Med. Genet. B Neuropsychiatr. Genet., 177, No. 3, 346–357 (2018), https://doi.org/10.1002/ajmg.b.32618.

    Article  CAS  PubMed  Google Scholar 

  46. A. Semaka, L. G. Balneaves, and M. R. Hayden, “’Grasping the grey’: patient understanding and interpretation of an intermediate allele predictive test result for Huntington disease,” J. Genet. Couns., 22, No. 2, 200–217 (2013), https://doi.org/10.1007/s10897-012-9533-7.

    Article  CAS  PubMed  Google Scholar 

  47. A. E. Hendricks, J. C. Latourelle, K. L. Lunetta, et al., “Estimating the probability of de novo HD cases from transmissions of expanded penetrant CAG alleles in the Huntington disease gene from male carriers of high normal alleles (27–35 CAG),” Am. J. Med. Genet. A, 149A, No. 7, 1375–1381 (2009), https://doi.org/10.1002/ajmg.a.32901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. A. Semaka, C. Kay, C. Doty, et al., “CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease,” J. Med. Genet., 50, No. 10, 696–703 (2013), https://doi.org/10.1136/jmedgenet-2013-101796.

    Article  CAS  PubMed  Google Scholar 

  49. H. Telenius, B. Kremer, Y. P. Goldberg, et al., “Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm,” Nat. Genet., 6, No. 4, 409–414 (1994), https://doi.org/10.1038/ng0494-409.

    Article  CAS  PubMed  Google Scholar 

  50. A. Semaka, C. Kay, R. D. Belfroid, et al., “A new mutation for Huntington disease following maternal transmission of an intermediate allele,” Eur. J. Med. Genet., 58, No. 1, 28–30 (2015), https://doi.org/10.1016/j.ejmg.2014.11.005.

    Article  PubMed  Google Scholar 

  51. R. MacLeod, A. Tibben, M. Frontali, et al., “Editorial Committee and Working Group ‘Genetic Testing Counselling’ of the European Huntington Disease Network. Recommendations for the predictive genetic test in Huntington’s disease,” Clin. Genet., 83, No. 3, 221–231 (2013), https://doi.org/10.1111/j.1399-0004.2012.01900.x.

    Article  CAS  PubMed  Google Scholar 

  52. A. Semaka and M. R. Hayden, “Evidence-based genetic counselling implications for Huntington disease intermediate allele predictive test results,” Clin. Genet., 85, No. 4, 303–311 (2014), https://doi.org/10.1111/cge.12324.

    Article  CAS  PubMed  Google Scholar 

  53. F. Squitieri and J. Jankovic, “Huntington’s disease: how intermediate are intermediate repeat lengths?” Mov. Disord., 27, No. 14, 1714–1717 (2012), https://doi.org/10.1002/mds.25172.

    Article  CAS  PubMed  Google Scholar 

  54. L. Bean, P. Bayrak-Toydemir, and the ACMG Laboratory Quality Assurance Committee, “Addendum: American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories, 2014 edition: technical standards and guidelines for Huntington disease,” Genet. Med., 23, No. 12, 2461 (2021), https://doi.org/10.1038/s41436-020-0893-3.

  55. S. N. Illarioshkin, S. A. Klyushnikov, and Yu. A. Seliverstov, Huntington’s Disease, Atmosfera Press, Moscow (2018), https://doi.org/10.12731/978-5-902123-69-9.

    Book  Google Scholar 

  56. J. Jankovic and T. Ashizawa, “Tourettism associated with Huntington’s disease,” Mov. Disord., 10, No. 1, 103–105 (1995), https://doi.org/10.1002/mds.870100116.

    Article  CAS  PubMed  Google Scholar 

  57. A. Ng and E. Tan, “Intermediate C9orf72 alleles in neurological disorders: does size really matter?” J. Med. Genet., 54, 591–597 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. S. Migliore, J. Jankovic, and F. Squitieri, “Genetic counseling in Huntington’s disease: Potential new challenges on horizon?” Front. Neurol., 10, 453 (2019), https://doi.org/10.3389/fneur.2019.00453.

    Article  PubMed  PubMed Central  Google Scholar 

  59. G. M. McKhann, D. S. Knopman, H. Chertkow, et al., “The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease,” Alzheimers Dement., 7, No. 3, 263–269 (2011), https://doi.org/10.1016/j.jalz.2011.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  60. R. B. Postuma, D. Berg, M. Stern, et al., “MDS clinical diagnostic criteria for Parkinson’s disease,” Mov. Disord., 30, No. 12, 1591–1601 (2015), https://doi.org/10.1002/mds.26424.

    Article  PubMed  Google Scholar 

  61. A. Semaka, S. Warby, B. R. Leavitt, and M. R. Hayden, “Re: Autopsy-proven Huntington’s disease with 29 trinucleotide repeats,” Mov. Disord., 23, No. 12, 1794–1795, author reply 1793 (2008), https://doi.org/10.1002/mds.21820.

  62. M. Y. Davis, C. D. Keene, S. Jayadev, and T. Bird, “The co-occurrence of Alzheimer’s disease and Huntington’s disease: a neuropathological study of 15 elderly Huntington’s disease subjects,” J. Huntingtons Dis., 3, No. 2, 209–217 (2014), https://doi.org/10.3233/JHD-140111.

    Article  CAS  PubMed  Google Scholar 

  63. K. Bürger, R. Mergner, V. Arbusow, et al., ”Chorea Huntington mit später Manifestation als Differenzialdiagnose der Alzheimer-Krankheit,” Nervenarzt, 73, No. 9, 870–873 (2002), https://doi.org/10.1007/s00115-002-1361-9.

    Article  PubMed  Google Scholar 

  64. E. Mulroy, A. Latorre, E. Menozzi, et al., “Huntington disease like 2 (HDL-2) with parkinsonism and abnormal DAT-SPECT – A novel observation,” Parkinsonism Relat. Disord., 71, 46–48 (2020), https://doi.org/10.1016/j.parkreldis.2020.01.008.

    Article  PubMed  Google Scholar 

  65. Y. M. Sun, Y. B. Zhang, and Z. Y. Wu, “Huntington’s disease: Relationship between phenotype and genotype,” Mol. Neurobiol., 54, No. 1, 342–348 (2017), https://doi.org/10.1007/s12035-015-9662-8.

    Article  CAS  PubMed  Google Scholar 

  66. J. K. Lee, A. Conrad, E. Epping, et al., “Effect of trinucleotide repeats in the Huntington’s gene on intelligence,” EBioMedicine, 31, 47–53 (2018), https://doi.org/10.1016/j.ebiom.2018.03.031.

    Article  PubMed  PubMed Central  Google Scholar 

  67. S. L. Gardiner, M. J. van Belzen, M. W. Boogaard, et al., “Huntingtin gene repeat size variations affect risk of lifetime depression,” Transl. Psychiatry, 7, No. 12, 1277 (2017), PMCID: 29225330, PMC5802693, https://doi.org/10.1038/s41398-017-0042-1.

  68. S. L. Gardiner, M. J. van Belzen, M. W. Boogaard, et al., “Large normal-range TBP and ATXN7 CAG repeat lengths are associated with increased lifetime risk of depression,” Transl. Psychiatry, 7, No. 6, e1143 (2017), https://doi.org/10.1038/tp.2017.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. R. R. Bogdanov, S. Yu. Borisova, S. V. Kotov, and O. O. Zavarzina, “The personality profile of patients with early manifestations of Parkinson’s disease,” Alman. Klin. Med., 44, No. 3, 329–335 (2016), https://doi.org/10.18786/2072-0505-2016-44-3-329-335.

    Article  Google Scholar 

  70. R. Dewan, R. Chia, J. Ding, et al., “Pathogenic Huntingtin repeat expansions in patients with frontotemporal dementia and amyotrophic lateral sclerosis,” Neuron, 109, No. 3, 448–460.e4 (2021), https://doi.org/10.1016/j.neuron.2020.11.005.

    Article  CAS  PubMed  Google Scholar 

  71. F. Squitieri, M. Esmaeilzadeh, A. Ciarmiello, and J. Jankovic, “Caudate glucose hypometabolism in a subject carrying an unstable allele of intermediate CAG(33) repeat length in the Huntington’s disease gene,” Mov. Disord., 26, No. 5, 925–927 (2011), https://doi.org/10.1002/mds.23623.

    Article  PubMed  Google Scholar 

  72. J. L. Groen, R. M. de Bie, E. M. Foncke, et al., “Late-onset Huntington disease with intermediate CAG repeats: true or false?” J. Neurol. Neurosurg. Psychiatry, 81, No. 2, 228–230 (2010), https://doi.org/10.1136/jnnp.2008.170902.

    Article  PubMed  Google Scholar 

  73. M. A. Nikitina, E. Yu. Bragina, and D. E. Gomboeva, et al., “Atypical course of Parkinson’s disease with clinical manifestations of Huntington’s disease in a patient with an allele of 27 CAG repeats in the HTT gene,” Byull. Sibirsk. Med., M. A. 19, No. 4, 235–240 (2020), https://doi.org/10.20538/1682-0363-2020-4-235-240.

  74. E. Cubo, M. A. Ramos-Arroyo, S. Martinez-Horta, et al., European HD Network, “Clinical manifestations of intermediate allele carriers in Huntington disease,” Neurology, 87, No. 6, 571–578 (2016), https://doi.org/10.1212/WNL.0000000000002944.

  75. A. D. Ha and J. Jankovic, “Exploring the correlates of intermediate CAG repeats in Huntington disease,” Postgrad. Med., 123, No. 5, 116–121 (2011), https://doi.org/10.3810/pgm.2011.09.2466.

    Article  PubMed  Google Scholar 

  76. J. Sequeiros, E. M. Ramos, J. Cerqueira, et al., “Large normal and reduced penetrance alleles in Huntington disease: instability in families and frequency at the laboratory, at the clinic and in the population,” Clin. Genet., 78, No. 4, 381–387 (2010), https://doi.org/10.1111/j.1399-0004.2010.01388.x.

    Article  CAS  PubMed  Google Scholar 

  77. T. B. Stoker, S. T. Holden, and R. A. Barker, “Late-onset Huntington’s disease associated with CAG repeat lengths of 30 and 31,” J. Neurol., 268, No. 10, 3916–3919 (2021), https://doi.org/10.1007/s00415-021-10633-3.

    Article  PubMed  Google Scholar 

  78. S. D. Jevtic and J. P. Provias, “Case report and literature review of Huntington disease with intermediate CAG expansion,” BMJ Neurol. Open, 2, No. 1, e000027 (2020), https://doi.org/10.1136/bmjno-2019-000027.

    Article  PubMed  PubMed Central  Google Scholar 

  79. S. R. Chintalaphani, S. S. Pineda, I. W. Deveson, and K. R. Kumar, “An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics,” Acta Neuropathol. Comm., 9, No. 1, 45–49 (2021), https://doi.org/10.1186/s40478-021-01201-x.

    Article  Google Scholar 

  80. A. S. L. Ng and E. Tan, “Intermediate C9orf72 alleles in neurological disorders: does size really matter?” J. Med. Genet., 54, 591–597 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nikitina.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 7, Iss. 1, pp. 42–50, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitina, M.A., Bragina, E.Y., Nazarenko, M.S. et al. The Role of Alleles with Intermediate Numbers of Trinucleotide Repeats in Parkinson’s Disease and Other Neurodegenerative Diseases. Neurosci Behav Physi 53, 193–201 (2023). https://doi.org/10.1007/s11055-023-01408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01408-6

Keywords

Navigation