Skip to main content

Advertisement

Log in

Conducting Channels in the Visual System. The Third Channel

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The visual conducting pathways of higher mammals consist of three main channels: X, Y, and W in carnivores and the magno-, parvo-, and koniocellular pathways in primates; neurons in these channels differ in terms of body area, extent of dendrite branching, and axon thickness, which determine the characteristic properties of their receptive fields. The structural-functional organization of the first two channels – X/parvo and Y/magno – have been analyzed in many experimental and theoretical studies, and have been addressed in informative reviews and monographs; the characteristics of the organization of the third (W/konio) conducting channel have long attracted much less attention, and its large-scale study has only started relatively recently. The aim of the present work was to undertake a comparative analysis of existing data on the structure and functions of the third conducting channel in a number of mammals of the orders Carnivora and Primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, B. P. and Chalupa, L. M., “The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat’s lateral posterior nucleus,” Neuroscience, 15, 81–95 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Adams, M. M., Hof, P. R., Gattass, R., et al., “Visual cortical projections and chemoarchitecture of macaque monkey pulvinar,” J. Comp. Neurol., 419, 377–393 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ajina, S., Rees, G., Kennard, C., and Bridge, H., “Abnormal contrast responses in the extrastriate cortex of blindsight patients,” J. Neurosci., 35, 8201–8213 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, J. C., da Costa, N. M., and Martin, K. A., “The W cell pathway to cat primary visual cortex,” J. Comp. Neurol., 516, 20–35 (2009).

    Article  PubMed  Google Scholar 

  • Baldwin, M. K. L and Krubitzer, L., “Architectonic characteristics of the visual thalamus and superior colliculus in titi monkeys,” J. Comp. Neurol., 526, 1760–1776 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballas, I., Hoffmann, K. P., and Wagner, H. J., “Retinal projection to the nucleus of the optic tract in the cat as revealed by retrograde transport of horseradish peroxidase,” Neurosci. Lett., 26, 197–202 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Beck, P. D. and Kaas, J. H., “Thalamic connections of the dorsomedial visual area in primates,” J. Comp. Neurol., 396, 381–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Behan, M., Steinhacker, K., Jeffrey-Borger, S., and Meredith, M. A., “Chemoarchitecture of GABAergic neurons in the ferret superior colliculus,” J. Comp. Neurol., 452, 334–359 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Benevento, L. A. and Yoshida, K., “The afferent and efferent organization of the lateral geniculo-prestriate pathways in the macaque monkey,” J. Comp. Neurol., 203, 455–474 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Berson, D. M., “Retinal W-cell input to the upper superficial gray layer of the cat’s superior colliculus: a conduction-velocity analysis,” J. Neurophysiol., 58, 1035–1051 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Berson, D. M., Isayama, T., and Pu, M., “The Eta ganglion cell type of cat retina,” J. Comp. Neurol., 408, 204–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Berson, D. M., Pu, M., and Famiglietti, E. V., “The zeta cell: a new ganglion cell type in cat retina,” J. Comp. Neurol., 399, 269–288 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Boycott, B. B. and Wässle, H., “The morphological types of ganglion cells of the domestic cat’s retina,” J. Physiol., 240, 397–419 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd, J. D. and Casagrande, V. A., “Relationships between cytochrome oxidase (CO) blobs in primate primary visual cortex (V1) and the distribution of neurons projecting to the middle temporal area (MT),” J. Comp. Neurol., 409, 573–591 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Boyd, J. D. and Matsubara, J. A., “Projections from V1 to lateral suprasylvian cortex: an efferent pathway in the cat’s visual cortex that originates preferentially from CO blob columns,” Vis. Neurosci., 16, 849–860 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Buzás, P., Kóbor, P., Petykó, Z., et al., “Receptive field properties of color opponent neurons in the cat lateral geniculate nucleus,” J. Neurosci., 33, 1451–1461 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Callaway, E. M., “Structure and function of parallel pathways in the primate early visual system,” J. Physiol., 566, 13–9 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casagrande, V. A., “A third parallel visual pathway to primate area V1,” Trends Neurosci., 17, 305–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Casagrande, V. A., Khaytin, I., and Boyd, J., “The evolution of parallel visual pathways in the brains of primates,” in: Evolution of the Nervous System, Preuss, T. M. and Kaas J (eds.) (2007a), Vol. 4, p. 87–108.

  • Casagrande, V. A., Yazar, F., Jones, K. D., and Ding, Y., “The morphology of the koniocellular axon pathway in the macaque monkey,” Cereb. Cortex, 17, 2334–2345 (2007b).

    Article  CAS  PubMed  Google Scholar 

  • Chen, B., Hu, X. J., and Pourcho, R. G., “Morphological diversity in terminals of W-type retinal ganglion cells at projection sites in cat brain,” Vis. Neurosci., 13, 449–460 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Cheong, S. K., Tailby, C., Martin, P. R., et al., “Slow intrinsic rhythm in the koniocellular visual pathway,” Proc. Natl. Acad. Sci. USA, 108, 14659–14663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland, B. G. and Levick, W. R., “Brisk and sluggish concentrically organized ganglion cells in the cat’s retina,” J. Physiol., 240, 421–456 (1974a).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland, B. G. and Levick, W. R., “Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classifi cation,” J. Physiol., 240, 457–492 (1974b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condo, G. J. and Casagrande, V. A., “Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis): I. Adult patterns,” J. Comp. Neurol., 293, 632–645 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Conley, M., Fitzpatrick, D., and Diamond, I. T., “The laminar organization of the lateral geniculate body and the striate cortex in the tree shrew (Tupaia glis),” J. Neurosci., 4, 171–197 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, M. S. and Britto, L. R., “Calbindin immunoreactivity delineates the circadian visual centers of the brain of the common marmoset (Callithrix jacchus),” Brain Res. Bull., 43, 369–373 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Costa, M. S. M. O., Moreira, L. F., Alones, V., et al., “Characterization of the circadian system in a Brazilian species of monkey (Callithrix jacchus): immunohistochemical analysis and retinal projections,” Biol. Rhythm Res., 29, 510–520 (1998).

    Article  Google Scholar 

  • Cottaris, N. P. and De Valois, R. L., “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature, 395, 896–900 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Cowey, A., Johnson, H., and Stoerig, P., “The retinal projection to the pregeniculate nucleus in normal and destriate monkeys,” Eur. J. Neurosci., 13, 279–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Cowey, A., Stoerig, P., and Bannister, M., “Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys,” Neuroscience, 61, 691–705 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Crook, J. D., Peterson, B. B., Packer, O. S., et al., “The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey,” J. Neurosci., 28, 12,654–12,671 (2008).

    Google Scholar 

  • Cropper, S. J. and Derrington, A. M., “Rapid colour-specifi c detection of motion in human vision,” Nature, 379, 72–74 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Cui He and Malpeli, J. G., “Activity in the parabigeminal nucleus during eye movements directed at moving and stationary targets,” J. Neurophysiol., 89, 3128–3142 (2003).

    Article  Google Scholar 

  • Cusick, C. G., Scripter, J. L., Darensbourg, J. G., and Weber, J. T., “Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr,” J. Comp. Neurol., 336, 1–30 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Dacey, D. M. and Lee, B. B., “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature, 367, 731–735 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Dacey, D. M. and Packer, O. S., “Colour coding in the primate retina: diverse cell types and cone-specifi c circuitry,” Curr. Opin. Neurobiol., 13, 421–427 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Dacey, D. M., “Morphology of a small-field bistratified ganglion cell type in the macaque and human retina,” Vis. Neurosci., 10, 1081–1098 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Dacey, D. M., Peterson, B. B., Robinson, F. R., and Gamlin, P. D., “Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types,” Neuron, 37, 15–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Danckert, J. and Rossetti, Y., “Blindsight in action: what can the different sub-types of blindsight tell us about the control of visually guided actions?” Neurosci. Biobehav. Rev., 29, 1035–1046 (2005).

    Article  PubMed  Google Scholar 

  • Daw, N. W. and Pearlman, A. L., “Cat colour vision: evidence for more than one cone process,” J. Physiol., 211, 125–137 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Monasterio, F. M. and Gouras, P., “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol., 251, 167–195 (1975).

    Article  PubMed  PubMed Central  Google Scholar 

  • DeBruyn, E. J., Casagrande, V. A., Beck, P. D., and Bonds, A. B., “Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby, correlations with cortical layers and cytochrome oxidase patterns,” J. Neurophysiol., 69, 3–18 (1993).

  • Denny-Brown, D. and Chambers, R. A., “Physiological aspects of visual perception. I. Functional aspects of visual cortex,” Arch. Neurol., 33, 219–227 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Di Stefano, M., Morrone, M. C., and Burr, D. C., “Visual acuity of neurones in the cat lateral suprasylvian cortex,” Brain Res., 331, 382– 385 (1985).

    Article  PubMed  Google Scholar 

  • Diamond, I. T., Conley, M., Itoh, K., and Fitzpatrick, D., “Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus,” J. Comp. Neurol., 242, 584–610 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Diamond, I. T., Fitzpatrick, D., and Conley, M., “A projection from the parabigeminal nucleus to the pulvinar nucleus in Galago,” J. Comp. Neurol., 316, 375–382 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Diamond, I. T., Fitzpatrick, D., and Schmechel, D., “Calcium binding proteins distinguish large and small cells of the ventral posterior and lateral geniculate nuclei of the prosimian galago and the tree shrew (Tupaia belangeri),” Proc. Natl. Acad. Sci. USA, 90, 1425–1429 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, Y. and Casagrande, V. A., “The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1,” Vis. Neurosci., 14, 691–704 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Do, M. T. H. and Yau, K.-W., “Intrinsically photosensitive retinal ganglion cells,” Physiol. Rev., 90, 1547–1581 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Dreher, B., Leventhal, A. G., and Hale, P. T., “Geniculate input to cat visual cortex: a comparison of area 19 with areas 17 and 18,” J. Neurophysiol., 44, 804–826 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Eiber, C. D., Rahman, A. S., Pietersen, A. N. J., et al., “Receptive field properties of koniocellular On/Off neurons in the lateral geniculate nucleus of marmoset monkeys,” J. Neurosci., 38, 10384–10398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Famiglietti, E. V., “Dendritic co-stratifi cation of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina,” J. Comp. Neurol., 324, 322–335 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Famiglietti, E. V., “Starburst amacrine cells in cat retina are associated with bistratified, presumed directionally selective, ganglion cells,” Brain Res., 413, 404–408 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Farmer, S. G. and Rodieck, R. W., “Ganglion cells of the cat accessory optic system: morphology and retinal topography,” J. Comp. Neurol., 205, 190–198 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Feig, S. and Harting, J. K., “Ultrastructural studies of the primate lateral geniculate nucleus: morphology and spatial relationships of axon terminals arising from the retina, visual cortex (area 17), superior colliculus, parabigeminal nucleus, and pretectum of Galago crassicaudatus,” J. Comp. Neurol., 343, 17–34 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Felch, D. L. and Van Hooser, S. D., “Molecular compartmentalization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis),” Front. Neuroanat., 6, 1–12 (2012).

    Article  Google Scholar 

  • Fitzpatrick, D., Itoh, K., and Diamond, I. T., “The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus),” J. Neurosci., 3, 673–702 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukada, Y., “Receptive field organization of cat optic nerve fi bers with special reference to conduction velocity,” Vision Res., 11, 209–226 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, Y. and Stone, J., “Retinal distribution and central projections of Y, X, and W-cells of the cat’s retina,” J. Neurophysiol., 37, 749–772 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, Y., Hsiao, C. F., Watanabe, M., and Ito, H., “Morphological correlates of physiologically identified Y-, X-, and W-cells in cat retina,” J. Neurophysiol., 52, 999–1013 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Ghodrati, M., Khaligh-Razavi, S. M., and Lehky, S. R., “Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role,” Prog. Neurobiol., 156, 214–255 (2017).

    Article  PubMed  Google Scholar 

  • Ghosh, K. K. and Grünert, U., “Synaptic input to small bistratified (blue- ON) ganglion cells in the retina of a new world monkey, the marmoset Callithrix jacchus,” J. Comp. Neurol., 413, 417–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Giolli, R. A., Blanks, R. H., and Lui, F., “The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function,” Prog. Brain Res., 151, 407–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Gollisch, T. and Meister, M., “Eye smarter than scientists believed: neural computations in circuits of the retina,” Neuron, 65, 150–164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodchild, A. K. and Martin, P. R., “The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of a New World monkey, the marmoset, Callithrix jacchus,” Vis. Neurosci., 15, 625–642 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Gray, D., Gutierrez, C., and Cusick, C. G., “Neurochemical organization of inferior pulvinar complex in squirrel monkeys and macaques revealed by acetylcholinesterase histochemistry, calbindin and Cat- 301 immunostaining, and Wisteria fl oribunda agglutinin binding,” J. Comp. Neurol., 409, 452–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Graybiel, A. M., “A satellite system of the superior colliculus: the parabigeminal nucleus and its projections to the superfi cial collicular layers,” Brain Res., 145, 365–374 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Guenther, E. and Zrenner, E., “The spectral sensitivity of dark- and light-adapted cat retinal ganglion cells,” J. Neurosci., 13, 1543–1550 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harting, J. K., Casagrande, V. A., and Weber, J. T., “The projection of the primate superior colliculus upon the dorsal lateral geniculate nucleus: autoradiographic demonstration of interlaminar distribution of tectogeniculate axons,” Brain Res., 150, 593–599 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Harting, J. K., Hashikawa, T., and Van Lieshout, D., “Laminar distribution of tectal, parabigeminal and pretectal inputs to the primate dorsal lateral geniculate nucleus: connectional studies in Galago crassicaudatus,” Brain Res., 366, 358–363 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Harting, J. K., Huerta, M. F., Hashikawa, T., and van Lieshout, D. P., “Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species,” J. Comp. Neurol., 304, 275–306 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Hashikawa, T., Van Lieshout, D., and Harting, J. K., “Projections from the parabigeminal nucleus to the dorsal lateral geniculate nucleus in the tree shrew Tupaia glis,” J. Comp. Neurol., 246, 382–394 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Hassler, R., “Comparative anatomy of the central visual systems in dayand night-active primates,” in: Evolution of the Forebrain, Hassler, R. and Stephan H (eds), Springer, Boston, MA (1966).

    Chapter  Google Scholar 

  • Hendry, S. H. and Yoshioka, T., “A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus,” Science, 264, 575–577 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Hendry, S. H. C. and Reid, R. C., “The koniocellular pathway in primate vision,” Annu. Rev. Neurosci., 23, 127–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Hendry, S. H., Fuchs, J., deBlas, A. L., and Jones, E. G., “Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex,” J. Neurosci., 10, 2438–2450 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-González, A., Cavada, C., and Reinoso-Suárez, F., “The lateral geniculate nucleus projects to the inferior temporal cortex in the macaque monkey,” Neuroreport, 5, 2693–2696 (1994).

    Article  PubMed  Google Scholar 

  • Hess, D. T. and Edwards, M. A., “Anatomical demonstration of ocular segregation in the retinogeniculocortical pathway of the New World capuchin monkey (Cebus apella),” J. Comp. Neurol., 264, 409–420 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, K.-P., “Conduction velocity in pathways from retina to superior colliculus in the cat: a correlation with receptive field properties,” J. Neurophysiol., 36, 409–424 (1973).

    Article  CAS  PubMed  Google Scholar 

  • Holländer, H. and Vanegas, H., and “The projection from the lateral geniculate nucleus onto the visual cortex in the cat. A quantitative study with horseradish-peroxidase,” J. Comp. Neurol., 173, 519–536 (1977).

    Article  PubMed  Google Scholar 

  • Horton, J. C. and Hocking, D. R., “Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity,” J. Neurosci., 18, 5433–5455 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton, J. C., “Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 304, 199–253 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Hubel, D. H., “Blobs and color vision,” Cell Biophys., 9, 91–102 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Hughes, C. P. and Ater, S. B., “Receptive field properties in the ventral lateral geniculate nucleus of the cat,” Brain Res., 132, 163–166 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Huo, B.-X., Zeater, N., Lin, M. K., et al., “Relation of koniocellular layers of dorsal lateral geniculate to inferior pulvinar nuclei in common marmosets,” Eur. J. Neurosci., 50, 4004–4017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Irvin, G. E., Norton, T. T., Sesma, M. A., and Casagrande, V. A., “W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus),” Brain Res., 362, 254–270 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Isayama, T., Berson, D. M., and Pu, M., “Theta ganglion cell type of cat retina,” J. Comp. Neurol., 417, 32–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Isayama, T., O’Brien, B. J., Ugalde, I., et al., “Morphology of retinal ganglion cells in the ferret (Mustela putorius furo),” J. Comp. Neurol., 517, 459–480 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Itaya, S. K. and Van Hoesen, G. W., “Retinal projections to the inferior and medial pulvinar nuclei in the Old-World monkey,” Brain Res., 269, 223–230 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Itoh, K., Conley, M., and Diamond, I. T., “Different distribution of large and small retinal ganglion cells in the cat after HRP injections of single layers of the lateral geniculate body and the superior colliculus,” Brain Res., 207, 147–152 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Itoh, K., Conley, M., and Diamond, I. T., “Retinal ganglion cell projections to individual layers of the lateral geniculate body in Galago crassicaudatus,” J. Comp. Neurol., 205, 282–290 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, G. H., Neitz, M., and Neitz, J., “Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate,” Proc. Biol. Sci., 263, 705–710 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, J. K. and Casagrande, V. A., “Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus),” J. Comp. Neurol., 356, 238–260 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Jones, E. G., “The thalamic matrix and thalamocortical synchrony,” Trends Neurosci., 24, 595–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kaas, J. H., “Blindsight: post-natal potential of a transient pulvinar pathway,” Curr. Biol., 25, R155–157 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Kaas, J. H., Harting, J. K., and Guillery, R. W., “Representation of the complete retina in the contralateral superior colliculus of some mammals,” Brain Res., 65, 343–346 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, E., The M, K, and P Streams in the Primate Visual System: What Do They Do for Vision?, Masland, R. and Albright, T (eds.), Elsevier, UK (2008).

  • Kawano, J., “Cortical projections of the parvocellular laminae C of the dorsal lateral geniculate nucleus in the cat: an anterograde wheat germ agglutinin conjugated to horseradish peroxidase study,” J. Comp. Neurol., 392, 439–457 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Klein, C., Evrard, H. C., Shapcott, K. A., et al., “Cell-targeted optogenetics and electrical microstimulation reveal the primate koniocellular projection to supragranular visual cortex,” Neuron, 90, 143–151 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Kolb, H., Nelson, R., and Mariani, A., “Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study,” Vision Res., 21, 1081– 1114 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Koontz, M. A., Rodieck, R. W., and Farmer, S. G., “The retinal projection to the cat pretectum,” J. Comp. Neurol., 236, 42–59 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Lachica, E. A. and Casagrande, V. A., “Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology,” J. Comp. Neurol., 319, 141–158 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Lachica, E. A. and Casagrande, V. A., “The morphology of collicular and retinal axons ending on small relay (W-like) cells of the primate lateral geniculate nucleus,” Vis. Neurosci., 10, 403–418 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Lennie, P., “Parallel visual pathways: a review,” Vision Res., 20, 561–594 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Leopold, D. A., “Primary visual cortex: awareness and blindsight,” Annu. Rev. Neurosci., 35, 91–109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeVay, S. and Gilbert, C. D., “Laminar patterns of geniculocortical projection in the cat,” Brain Res., 113, 1–19 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Leventhal, A. G., “Evidence that the different classes of relay cells of the cat’s lateral geniculate nucleus terminate in different layers of the striate cortex,” Exp. Brain Res., 37, 349–372 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Leventhal, A. G., Keens, J., and Törk, I., “The afferent ganglion cells and cortical projections of the retinal recipient zone (RRZ) of the cat’s pulvinar complex,” J. Comp. Neurol., 194, 535–554 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Leventhal, A. G., Rodieck, R. W., and Dreher, B., “Central projections of cat retinal ganglion cells,” J. Comp. Neurol., 237, 216–226 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. S. and Kaas, J. H., “Projections from the medial nucleus of the inferior pulvinar complex to the middle temporal area of the visual cortex,” Neuroscience, 5, 2219–2228 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Livingston, C. A. and Fedder, S. R., “Visual-ocular motor activity in the macaque pregeniculate complex,” J. Neurophysiol., 90, 226–244 (2003).

    Article  PubMed  Google Scholar 

  • Livingstone, M. and Hubel, D., “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science, 240, 740–749 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Lysakowski, A., Standage, G. P., and Benevento, L. A., “An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to cortical areas V1 and V4 in the macaque monkey: a double label retrograde tracer study,” Exp. Brain Res., 69, 651–661 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Ma, R., Cui, H., Lee, S.-H., et al., “Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus,” J. Neurophysiol., 109, 2029–2043 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshak, D. W. and Mills, S. L., “Short-wavelength cone-opponent retinal ganglion cells in mammals,” Vis. Neurosci., 31, 165–175 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, P. R. and Grünert, U., “Analysis of the short wavelength-sensitive (‘blue’) cone mosaic in the primate retina: comparison of New World and Old World monkeys,” J. Comp. Neurol., 406, 1–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Martin, P. R. and Lee, B. B., “Distribution and specifi city of S-cone (‘blue cone’) signals in subcortical visual pathways,” Vis. Neurosci., 31, 177–187 (2014).

    Article  PubMed  Google Scholar 

  • Martin, P. R. and Solomon, S. G., “The koniocellular whiteboard,” J. Comp. Neurol., 527, No. 3, 505–507 (2018).

    Article  PubMed  Google Scholar 

  • Martin, P. R., White, A. J., Goodchild, A. K., et al., “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci., 9, 1536–1541 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Mason, R., “Differential responsiveness of cells in the visual zones of the cat’s LP-pulvinar complex to visual stimuli,” Exp. Brain Res., 43, 25–33 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Mass, A. M. and Supin, A. Y., “Ganglion cells density and retinal resolution in the sea otter, Enhydra lutris,” Brain Behav. Evol., 55, 111–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Merigan, W. H. and Maunsell, J. H., “How parallel are the primate visual pathways?” Annu. Rev. Neurosci., 16, 369–402 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Merkulyeva, N. S., “Conducting channels in the visual system. Basis of classification,” Zh. Vyssh. Nerv. Deyat., 69, 541–549 (2019).

    Google Scholar 

  • Merkulyeva, N. S., Mikhalkin, A. A., and Nikitina, N. I., “Postnatal development of the posterolateral nuclear complex of the dorsal thalamus,” Integrat. Fiziol., 1, 242–248 (2020).

    Google Scholar 

  • Merkulyeva, N. S., Mikhalkin, A. A., and Veshchitskii, A. A., “Characteristics of the distribution of acetylcholinesterase in the posterolateral nucleus of the thalamus in cats,” Morfologiya, 148, 46–48 (2015).

    Google Scholar 

  • Mitzdorf, U. and Singer, W., “Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density,” J. Neurophysiol., 40, 1227–1244 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Mize, R. R. and Horner, L. H., “Retinal synapses of the cat medial interlaminar nucleus and ventral lateral geniculate nucleus differ in size and synaptic organization,” J. Comp. Neurol., 224, 579–590 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Mize, R. R., “Calbindin 28kD and parvalbumin immunoreactive neurons receive different patterns of synaptic input in the cat superior colliculus,” Brain Res., 843, 25–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Mize, R. R., “Neurochemical microcircuitry underlying visual and oculomotor function in the cat superior colliculus,” Prog. Brain Res., 112, 35–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Mize, R. R., Luo, Q., Butler, G., et al., “The calcium binding proteins parvalbumin and calbindin-D 28K form complementary patterns in the cat superior colliculus,” J. Comp. Neurol., 320, 243–256 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Morand, S., Thut, G., de Peralta, R. G., et al., “Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move,” Cereb. Cortex, 10, 817–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Mundinano, I.-C., Kwan, W. C., and Bourne, J. A., “Retinotopic specializations of cortical and thalamic inputs to area MT,” Proc. Natl. Acad. Sci. USA, 116, 23,326–23,331 (2019).

  • Murakami, D. M., Miller, J. D., and Fuller, C. A., “The retinohypothalamic tract in the cat: retinal ganglion cell morphology and pattern of projection,” Brain Res., 482, 283–296 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Murphy, K. M., Jones, D. G., and Van Sluyters, R. C., “Cytochromeoxidase blobs in cat primary visual cortex,” J. Neurosci., 15, 4196– 4208 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa, S. and Tanaka, S., “Retinal projections to the pulvinar nucleus of the macaque monkey: a re-investigation using autoradiography,” Exp. Brain Res., 57, 151–157 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, H. and Itoh, K., “Cytoarchitectonic and connectional organization of the ventral lateral geniculate nucleus in the cat,” J. Comp. Neurol., 473, 439–462 (2004).

    Article  PubMed  Google Scholar 

  • Nassi, J. J. and Callaway, E. M., “Multiple circuits relaying primate parallel visual pathways to the middle temporal area,” J. Neurosci., 26, 12789–12798 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassi, J. J. and Callaway, E. M., “Parallel processing strategies of the primate visual system,” Nat. Rev. Neurosci., 10, 360–372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neitz, J. and Neitz, M., “Evolution of the circuitry for conscious color vision in primates,” Eye (Lond.), 31, 286–300 (2017).

    Article  CAS  Google Scholar 

  • Niimi, K., Miki, M., and Kawamura, S., “Ascending projections of the superior colliculus in the cat,” Okajimas Folia Anat. Jpn., 47, 269–287 (1970).

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, B. J., Abel, P. L., and Olavarria, J. F., “The retinal input to calbindin-D28k-defi ned subdivisions in macaque inferior pulvinar,” Neurosci. Lett., 312, 145–148 (2001).

    Article  PubMed  Google Scholar 

  • Payne, B. R., Lomber, S. G., Macneil, M. A., and Cornwell, P., “Evidence for greater sight in blindsight following damage of primary visual cortex early in life,” Neuropsychologia, 34, 741–774 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Pearlman, A. L. and Daw, N. W., “Opponent color cells in the cat lateral geniculate nucleus,” Science, 167, 84–86 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Percival, K. A., Koizumi, A., Masri, R. A., et al., “Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset,” J. Neurosci., 34, 3821–3825 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry, V. H. and Cowey, A., “Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey,” Neurosci., 12, 1125–1137 (1984).

    Article  CAS  Google Scholar 

  • Perry, V. H., Oehler, R., and Cowey, A., “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neurosci., 12, 1101–1123 (1984).

    Article  CAS  Google Scholar 

  • Pietersen, A. N. J., Cheong, S. K., Solomon, S. G., et al., “Temporal response properties of koniocellular (blue-on and blue-off) cells in marmoset lateral geniculate nucleus,” J. Neurophysiol., 112, 1421–1438 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Podvigin, N. F., Makarov, F. N., and Shelepin, Yu. E., Elements of the Structural-Functional Organization of the Visual and Oculomotor Systems,” Nauka, Leningrad (1986).

    Google Scholar 

  • Polyak, S., “Minute structure of the retina in monkeys and in apes,” Arch. Ophthalmol, 15, 477–519 (1936).

    Article  Google Scholar 

  • Preuss, T. M. and Kaas, J. H., “Cytochrome oxidase ‘blobs’ and other characteristics of primary visual cortex in a lemuroid primate, Cheirogaleus medius,” Brain Behav. Evol., 47, 103–112 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Pu, M., “Dendritic morphology of cat retinal ganglion cells projecting to suprachiasmatic nucleus,” J. Comp. Neurol., 414, 267–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Raczkowski, D. and Rosenquist, A. C., “Connections of the parvocellular C laminae of the dorsal lateral geniculate nucleus with the visual cortex in the cat,” Brain Res., 199, 447–451 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Raczkowski, D., Hamos, J. E., and Sherman, S. M., “Synaptic circuitry of physiologically identified W-cells in the cat’s dorsal lateral geniculate nucleus,” J. Neurosci., 8, 31–48 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapaport, D. H., Fletcher, J. T., LaVail, M. M., and Rakic, P., “Genesis of neurons in the retinal ganglion cell layer of the monkey,” J. Comp. Neurol., 322, 577–588 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Reese, B. E., Thompson, W. F., and Peduzzi, J. D., “Birthdates of neurons in the retinal ganglion cell layer of the ferret,” J. Comp. Neurol., 341, 464–475 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Rheaume, B. A., Jereen, A., Bolisetty, M., et al., “Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes,” Nat. Commun., 9, 2759 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rima, S. and Schmid, M. C., “V1-bypassing thalamo-cortical visual circuits in blindsight and developmental dyslexia,” Curr. Opin. Physiol., 16, 14–20 (2020).

    Article  Google Scholar 

  • Rockland, K. S., “Anatomical organization of primary visual cortex (area 17) in the ferret,” J. Comp. Neurol., 241, 225–236 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Rockoff, E., Balaram, P., and Kaas, J., “Patchy distributions of myelin and vesicular glutamate transporter 2 align with cytochrome oxidase blobs and interblobs in the superfi cial layers of the primary visual cortex,” Eye Brain, 6, Supplement 1, 19–27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodman, H. R., Gross, C. G., and Albright, T. D., “Afferent basis of visual response properties in area MT of the macaque: II. Effects of superior colliculus removal,” J. Neurosci., 10, 1154–1164 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodman, H. R., Sorenson, K. M., Shim, A. J., and Hexter, D. P., “Calbindin immunoreactivity in the geniculo-extrastriate system of the macaque: implications for heterogeneity in the koniocellular pathway and recovery from cortical damage,” J. Comp. Neurol., 431, 168–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Roe, A. W., Garraghty, P. E., Esguerra, M., and Sur, M., “Experimentally induced visual projections to the auditory thalamus in ferrets: evidence for a W cell pathway,” J. Comp. Neurol., 334, 263–280 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Rowe, M. H. and Cox, J. F., “Spatial receptive-field structure of cat retinal W cells,” Vis. Neurosci., 10, 765–779 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Rowe, M. H. and Dreher, B., “Retinal W-cell projections to the medial interlaminar nucleus in the cat: implications for ganglion cell classification,” J. Comp. Neurol., 204, 117–133 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Rowe, M. H. and Palmer, L. A., “Spatio-temporal receptive-field structure of phasic W cells in the cat retina,” Vis. Neurosci., 12, 117–139 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Saalmann, Y. B. and Kastner, S., “Gain control in the visual thalamus during perception and cognition,” Curr. Opin. Neurobiol., 19, 408– 14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saalmann, Y. B., Pinsk, M. A., Wang Liang, et al., “The pulvinar regulates information transmission between cortical areas based on attention demands,” Science, 337, 753–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller, P. H. and Malpeli, J. G., “Properties and tectal projections of monkey retinal ganglion cells,” J. Neurophysiol., 40, 428–445 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Schmid, M. C., Mrowka, S. W., Turchi, J., et al., “Blindsight depends on the lateral geniculate nucleus,” Nature, 466, 373–377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid, M. C., Panagiotaropoulos, T., Augath, M. A., et al., “Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex,” PLoS One, 4, e5527 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt, T. M., Chen, S.-K., and Hattar, S., “Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions,” Trends Neurosci., 34, 572–580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semo, M., Llamosas, M. M., Foster, R. G., and Jeffery, G., “Melanopsin (Opn4) positive cells in the cat retina are randomly distributed across the ganglion cell layer,” Vis. Neurosci., 22, 111–116 (2005).

    Article  PubMed  Google Scholar 

  • Sharma, J., Angelucci, A., and Sur, M., “Induction of visual orientation modules in auditory cortex,” Nature, 404, 841–847 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Shostak, Y., Ding, Y., Mavity-Hudson, J., and Casagrande, V. A., “Cortical synaptic arrangements of the third visual pathway in three primate species: Macaca mulatta, Saimiri sciureus, and Aotus trivirgatus,” J. Neurosci., 22, 2885–2893 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira, L. C., Lee, B. B., Yamada, E. S., et al., “Ganglion cells of a short-wavelength-sensitive cone pathway in New World monkeys: morphology and physiology,” Vis. Neurosci., 16, 333–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Sincich, L. C., Park, K. F., Wohlgemuth, M. J., and Horton, J. C., “Bypassing V1: a direct geniculate input to area MT,” Nat. Neurosci., 7, 1123–1128 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Soares, J. G., Botelho, E. P., and Gattass, R., “Distribution of calbindin, parvalbumin and calretinin in the lateral geniculate nucleus and superior colliculus in Cebus apella monkeys,” J. Chem. Neuroanat., 22, 139–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Solomon, S. G., Lee, B. B., White, A. J. R., et al., “Chromatic organization of ganglion cell receptive fields in the peripheral retina,” J. Neurosci., 25, 4527–4539 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spear, P. D., McCall, M. A., and Tumosa, N., “W-and Y-cells in the C layers of the cat’s lateral geniculate nucleus: normal properties and effects of monocular deprivation,” J. Neurosci., 61, 58–73 (1989).

    CAS  Google Scholar 

  • Spear, P. D., Smith, D. C., and Williams, L. L., “Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus,” J. Neurophysiol., 40, 390–409 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Sprague, J. M., Levy, J., and DiBerardino, A., and Berlucchi, G., “Visual cortical areas mediating form discrimination in the cat, J., “Comp,” Neurology, 172, 441–488 (1977).

  • Stanford, L. R. and Sherman, S. M., “Structure/function relationships of retinal ganglion cells in the cat,” Brain Res., 297, 381–386 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Stanford, L. R., “W-cells in the cat retina: correlated morphological and physiological evidence for two distinct classes,” J. Neurophysiol., 57, 218–244 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Stanford, L. R., Friedlander, M. J., and Sherman, S. M., “Morphological and physiological properties of geniculate W-cells of the cat: a comparison with X and Y-cells,” J. Neurophysiol., 50, 582–608 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska, I., Qi, H. X., and Kaas, J. H., “Do superior colliculus projection zones in the inferior pulvinar project to MT in primates?” Eur. J. Neurosci., 11, 469–480 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska, I., Qi, H. X., and Kaas, J. H., “Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys,” Vis. Neurosci., 17, 529–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Stone, J. and Hoffmann, K. P., “Very slow-conducting ganglion cells in the cat’s retina: a major, new functional type?” Brain Res., 43, 610–616 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Stone, J. and Keens, J., “Distribution of small and medium-sized ganglion cells in the cat’s retina,” J. Comp. Neurol., 192, 235–246 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Stone, J., Dreher, B., and Leventhal, A., “Hierarchical and parallel mechanisms in the organization of visual cortex,” Brain Res., 180, 345–394 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Sur, M. and Sherman, S. M., “Linear and nonlinear W-cells in C-laminae of the cat’s lateral geniculate nucleus,” J. Neurophysiol., 47, 869–884 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Sur, M., Garraghty, P. E., and Roe, A. W., “Experimentally induced visual projections into auditory thalamus and cortex,” Science, 242, 1437–1441 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Szmajda, B. A., Grünert, U., and Martin, P. R., “Retinal ganglion cell inputs to the koniocellular pathway,” J. Comp. Neurol., 510, 251–268 (2008).

    Article  PubMed  Google Scholar 

  • Tailby, C., Szmajda, B. A., Buzás, P., et al., “Transmission of blue (S) cone signals through the primate lateral geniculate nucleus,” J. Physiol., 586, 5947-5967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telkes, I., Distler, C., and Hoffmann, K. P., “Retinal ganglion cells projecting to the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic system in macaque monkeys,” Eur. J. Neurosci., 12, 2367-2375 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tootell, R. B., Hamilton, S. L., and Silverman, M. S., “Topography of cytochrome oxidase activity in owl monkey cortex,” J. Neurosci., 5, 2786–2800 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tootell, R. B., Silverman, M. S., Hamilton, S. L., et al., “Functional anatomy of macaque striate cortex. III. Color,” J. Neurosci., 8, 1569–1593 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrealba, F., Partlow, G. D., and Guillery, R. W., “Organization of the projection from the superior colliculus to the dorsal lateral geniculate nucleus of the cat,” Neurosci., 6, 1341–1360 (1981).

    Article  CAS  Google Scholar 

  • Troy, J. B. and Shou, T., “The receptive fields of cat retinal ganglion cells in physiological and pathological states: where we are after half a century of research,” Prog. Retin. Eye Res., 21, 263–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Turner, E. C., Gabi, M., Liao, C.-C., and Kaas, J. H., “The postnatal development of MT, V1, LGN, pulvinar and SC in prosimian galagos (Otolemur garnettii),” J. Comp. Neurol., 528, 3075–3094 (2020).

    Article  PubMed  Google Scholar 

  • Updyke, B. V., “The patterns of projection of cortical areas 17, 18, and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat,” J. Comp. Neurol., 163, 377–395 (1975).

    Article  CAS  PubMed  Google Scholar 

  • Usrey, W. M. and Reid, R. C., “Visual physiology of the lateral geniculate nucleus in two species of new world monkey: Saimiri sciureus and Aotus trivirgatis,” J. Physiol., 523, 755–769 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde Salzmann, M. F., Bartels, A., Logothetis, N. K., and Schüz, A., “Color blobs in cortical areas V1 and V2 of the new world monkey Callithrix jacchus, revealed by non-differential optical imaging,” J. Neurosci., 32, 7881–7894 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Essen, D. C., Anderson, C. H., and Felleman, D. J., “Information processing in the primate visual system: an integrated systems perspective,” Science, 255, 419–423 (1992).

    Article  PubMed  Google Scholar 

  • Vaney, D. I., “Territorial organization of direction-selective ganglion cells in rabbit retina,” J. Neurosci., 14, 6301–6316 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh, C., Polley, E. H., Hickey, T. L., and Guillery, R. W., “Generation of cat retinal ganglion cells in relation to central pathways,” Nature, 302, 611–614 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Warner, C. E., Goldshmit, Y., and Bourne, J. A., “Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei,” Front. Neuroanat., 12, 8 (2010).

    Google Scholar 

  • Wässle, H., “ Morphological types and central projections of ganglion cells in the cat retina,” Prog. Retin. Res., 1, 125–152 (1982).

    Article  Google Scholar 

  • Wässle, H., “Parallel processing in the mammalian retina,” Nat. Rev. Neurosci., 5, 747–757 (2004).

    Article  PubMed  Google Scholar 

  • Watanabe, M. and Rodieck, R. W., “Parasol and midget ganglion cells of the primate retina,” J. Comp. Neurol., 289, 434–454 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Weber, J. T., Huerta, M. F., Kaas, J. H., and Harting, J. K., “The projections of the lateral geniculate nucleus of the squirrel monkey: studies of the interlaminar zones and the S layers,” J. Comp. Neurol., 213, 135–145 (1983).

    Article  CAS  PubMed  Google Scholar 

  • Weiskrantz, L., Warrington, E. K., Sanders, M. D., and Marshall, J., “Visual capacity in the hemianopic field following a restricted occipital ablation,” Brain, 97, 709–728 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Weller, R. E. and Kaas, J. H., “Parameters affecting the loss of ganglion cells of the retina following ablations of striate cortex in primates,” Vis. Neurosci., 3, 327–349 (1989).

    Article  CAS  PubMed  Google Scholar 

  • White, A. J., Solomon, S. G., and Martin, P. R., “Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus,” J. Physiol., 533, 519–535 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikler, K. C. and Rakic, P., “Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates,” J. Neurosci., 10, 3390–3401 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, R. W., Cavada, C., and Reinoso-Suárez, F., “Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat,” J. Neurosci., 13, 208–228 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, P. D. and Stone, J., “Evidence of W-cell input to the cat’s visual cortex via the C laminae of the lateral geniculate nucleus,” Brain Res., 92, 472–478 (1975).

    Article  CAS  PubMed  Google Scholar 

  • Wilson, P. D., Rowe, M. H., and Stone, J., “Properties of relay cells in cat’s lateral geniculate nucleus: a comparison of W-cells with X and Y-cells,” J. Neurophysiol., 39, 1193–1209 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Wong-Riley, M. T. T., Hevner, R. F., Cutlan, R., et al., “Cytochrome oxidase in the human visual cortex: distribution in the developing and the adult brain,” Vis. Neurosci., 10, 41–58 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Xu, X., Bonds, A. B., and Casagrande, V. A., “Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus),” Vis. Neurosci., 19, 703–711 (2002).

    Article  PubMed  Google Scholar 

  • Xu, X., Ichida, J. M., Allison, J. D., Boyd, J. D., et al., “A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotis trivirgatis),” J. Physiol., 531, 203–218 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Dhingra, N. K., Smith, R. G., and Sterling, P., “Sluggish and brisk ganglion cells detect contrast with similar sensitivity,” J. Neurophysiol., 93, 2388–2395 (2005).

    Article  PubMed  Google Scholar 

  • Xue, J. T., Kim, C. B., Moore, R. J., and Spear, P. D., “Influence of the superior colliculus on responses of lateral geniculate neurons in the cat,” Vis. Neurosci., 11, 1059–1076 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Yabuta, N. H. and Callaway, E. M., “Functional streams and local connections of layer 4C neurons in primary visual cortex of the macaque monkey,” J. Neurosci., 18, 9489–9499 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, Y. H., Winarto, A., Mansjoer, I., and Hendrickson, A., “Parvalbumin, calbindin, and calretinin mark distinct pathways during development of monkey dorsal lateral geniculate nucleus,” J. Neurobiol., 31, 189– 209 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Yang, G. and Masland, R. H., “Direct visualization of the dendritic and receptive fields of directionally selective retinal ganglion cells,” Science, 258, 1949–1952 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Yukie, M. and Iwai, E., “Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys,” J. Comp. Neurol., 201, 81–97 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Merkulyeva.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 71, No. 6, pp. 785–802, November–December, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkulyeva, N.S. Conducting Channels in the Visual System. The Third Channel. Neurosci Behav Physi 52, 886–898 (2022). https://doi.org/10.1007/s11055-022-01313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01313-4

Keywords

Navigation