Skip to main content
Log in

Expression and Functional Role of Olfactory, Taste, and Phototransduction Signal Proteins in β Cells in Islets of Langerhans

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The taste, olfactory, and visual sensory systems support the reception and recognition of physical and chemical stimuli encountered in the environment. Expression of signal proteins involved in the taste, olfactory, and phototransduction systems has been detected in β cells in islets of Langerhans in the mammalian pancreas, which produce and secrete insulin. First identified in olfactory neurons, taste cells, and retinal rods and cones, sensory transduction cascade components carry out specific functions in the corresponding sensory cells. The roles of these molecules in β cell physiology remain controversial and their expression, unlike expression in specialized sensory cells, appears to be nonspecific and ectopic in nature. Data have now appeared indicating that signal proteins involved in sensory transduction may take part in regulating glucose-dependent insulin secretion in β cells. This review summarizes data on the expression and functional activities of sensory transduction elements in mammalian β cells and in model mouse, rat, and hamster insulinoma cell lines which retain the ability to synthesize and secrete insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Halim, S. M., Guenifi, A., He, B., et al., “Mutations in the promoter of adenylyl cyclase (AC)-III gene, overexpression of AC-III mRNA, and enhanced cAMP generation in islets from the spontaneously diabetic GK rat model of type 2 diabetes,” Diabetes, 47, No. 3, 498–504 (1998), https://doi.org/https://doi.org/10.2337/diabetes.47.3.498.

  • Adler, E., Hoon, M. A., Mueller, K. L., et al., “A novel family of mammalian taste receptors,” Cell, 100, No. 6, 693–702 (2000), https://doi.org/https://doi.org/10.1016/s0092-8674(00)80705-9.

  • Astesano, A., Regnauld, K., Ferrand, N., et al., “Cellular and subcellular expression of Golf/Gs and Gq/G11 alpha-subunits in rat pancreatic endocrine cells,” J. Histochem. Cytochem., 47, No. 3, 289–302 (1999), https://doi.org/https://doi.org/10.1177/002215549904700303.

  • Blache, P., Gros, L., Salazar, G., and Bataille, D., “Cloning and tissue distribution of a new rat olfactory receptor-like (OL2),” Biochem. Biophys. Res. Commun., 242, No. 3, 669–672 (1998), https://doi.org/https://doi.org/10.1006/bbrc.1997.8041.

  • Blondel, O., Moody, M. M., Depaoli, A. M., et al., “Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells,” Proc. Natl. Acad. Sci. USA, 91, No. 16, 7777–7781 (1994), https://doi.org/https://doi.org/10.1073/pnas.91.16.7777.

  • Blondel, O., Takeda, J., Janssen, H., et al., “Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues,” J. Biol. Chem., 268, No. 15, 11356–11363 (1993).

    Article  CAS  Google Scholar 

  • Boll, F., “On the anatomy and physiology of the retina,” Vision Res., 17, No. 11–12, 1249–1265 (1977), https://doi.org/https://doi.org/10.1016/0042-6989(77)90112-2.

  • Briscoe, C. P., Peat, A. J., McKeown, S. C., et al., “Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules,” Br. J. Pharmacol., 148, No. 5, 619–628 (2006), https://doi.org/https://doi.org/10.1038/sj.bjp.0706770.

  • Brixel, L. R., Monteilh-Zoller, M. K., Ingenbrandt, C. S., et al., “TRPM5 regulates glucose-stimulated insulin secretion,” Pflugers Arch., 460, No. 1, 69–76 (2010), https://doi.org/https://doi.org/10.1007/s00424-010-0835-z.

  • Bruce, J. I., Yang, X., Ferguson, C. J., et al., “Molecular and functional identification of a Ca2+ (polyvalent cation)-sensing receptor in rat pancreas,” J. Biol. Chem., 274, No. 29, 20,561–20,568 (1999), https://doi.org/https://doi.org/10.1074/jbc.274.29.20561.

  • Buck, L. and Axel, R., “A novel multigene family may encode odorant receptors: a molecular basis for odor recognition,” Cell, 65, No. 1, 175–187 (1991), https://doi.org/https://doi.org/10.1016/0092-8674(91)90418-x.

  • Caicedo, A., Pereira, E., Margolskee, R. F., and Roper, S. D., “Role of the G-protein subunit alpha-gustducin in taste cell responses to bitter stimuli,” J. Neurosci., 23, No. 30, 9947–9952 (2003), https://doi.org/https://doi.org/10.1523/JNEUROSCI.23-30-09947.2003.

  • Cassar, S. C., Chen, J., Zhang, D., and Gopalakrishnan, M., “Tissue specific expression of alternative splice forms of human cyclic nucleotide gated channel subunit CNGA3,” Mol. Vis., 10, 808–813 (2004).

    PubMed  Google Scholar 

  • Colsoul, B., Jacobs, G., Philippaert, K., et al., “Insulin downregulates the expression of the Ca2+-activated nonselective cation channel TRPM5 in pancreatic islets from leptin-deficient mouse models,” Pflugers Arch., 466, No. 3, 611–621 (2014), https://doi.org/https://doi.org/10.1007/s00424-013-1389-7.

  • Colsoul, B., Schraenen, A., Lemaire, K., et al., “Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5–/– mice,” Proc. Natl. Acad. Sci. USA, 107, No. 11, 5208–5213 (2010), https://doi.org/https://doi.org/10.1073/pnas.0913107107.

  • Da Silva Xavier, G., “The Cells of the islets of Langerhans,” J. Clin. Med., 7, No. 3, 54 – 59 (2018), https://doi.org/https://doi.org/10.3390/jcm7030054.

  • Del Guerra, S., Bugliani, M., D’Aleo, V., et al., “G-protein-coupled receptor 40 (GPR40) expression and its regulation in human pancreatic islets: the role of type 2 diabetes and fatty acids,” Nutr. Metab. Cardiovasc. Dis., 20, No. 1, 22–25 (2010), https://doi.org/https://doi.org/10.1016/j.numecd.2009.02.008.

  • Dolenšek, J., Rupnik, M. S., and Stožer, A., “Structural similarities and differences between the human and the mouse pancreas,” Islets, 1, No. 7, e1024405 (2015), https://doi.org/https://doi.org/10.1080/19382014.2015.1024405.

  • Elayat, A. A., el-Naggar, M. M., and Tahir, M., “An immunocytochemical and morphometric study of the rat pancreatic islets,” J. Anat., 186, 629–637 (1995);

    PubMed  PubMed Central  Google Scholar 

  • Emami, S., Regnauld, K., Ferrand, N., et al., “Stimulatory transducing systems in pancreatic islet cells,” Ann. N.Y. Acad. Sci., 865, 118–131 (1998), https://doi.org/https://doi.org/10.1111/j.1749-6632.1998.tb11170.x.

  • Ferrand, N., Astesano, A., and Rosselin, G., “Evidence of G-protein alpha s and alpha olf subunits in developing human pancreas,” Ann. N.Y. Acad. Sci., 805 (1), 563–569 (1996), https://doi.org/https://doi.org/10.1111/j.1749-6632.1996.tb17520.x

  • Fesenko, E. E., Kolesnikov, S. S., and Lyubarsky, A. L., “Direct action of cGMP on the conductance of retinal rod plasma membrane,” Biochim. Biophys. Acta, 856, No. 3, 661–671 (1986), https://doi.org/https://doi.org/10.1016/0005-2736(86)90162-8.

  • Fiume, R., Ramazzotti, G., Faenza, I., et al., “Nuclear PLCs affect insulin secretion by targeting PPARγ in pancreatic β cells,” FASEB J., 26, No. 1, 203–210 (2012), https://doi.org/https://doi.org/10.1096/fj.11-186510.

  • Frayon, S., Pessah, M., Giroix, M. H., et al., “Galphaolf identification by RT-PCR in purified normal pancreatic B cells and in islets from rat models of non-insulin-dependent diabetes,” Biochem. Biophys. Res. Com., 254, No. 1, 269–272 (1999), https://doi.org/https://doi.org/10.1006/bbrc.1998.9791.

  • Fujiwara, K., Maekawa, F., and Yada, T., “Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release,” Am. J. Physiol. Endocrinol. Metab., 289, No. 4, E670–E677 (2005), https://doi.org/https://doi.org/10.1152/ajpendo.00035.2005.

  • Gasa, R., Trinh, K. Y., Yu, K., et al., “Overexpression of G11alpha and isoforms of phospholipase C in islet beta-cells reveals a lack of correlation between inositol phosphate accumulation and insulin secretion,” Diabetes, 48, No. 5, 1035–1044 (1999), https://doi.org/https://doi.org/10.2337/diabetes.48.5.1035.

  • Godchaux, W., 3rd and Zimmerman, W. F., “Membrane-dependent guanine nucleotide binding and GTPase activities of soluble protein from bovine rod cell outer segments,” J. Biol. Chem., 254, No. 16, 7874–7884 (1979).

    Article  CAS  Google Scholar 

  • Guenifi, A., Portela-Gomes, G. M., Grimelius, L., et al., “Adenylyl cyclase isoform expression in non-diabetic and diabetic Goto-Kakizaki (GK) rat pancreas. Evidence for distinct overexpression of type-8 adenylyl cyclase in diabetic GK rat islets,” Histochem. Cell Biol., 113, No. 2, 81–89 (2000), https://doi.org/https://doi.org/10.1007/s004180050010.

  • Hayes, H. L., Moss, L. G., Schisler, J. C., et al., “Pdx-1 activates islet α-and β-cell proliferation via a mechanism regulated by transient receptor potential cation channels 3 and 6 and extracellular signal-regulated kinases 1 and 2,” Mol. Cell. Biol., 33, No. 20, 4017–4029 (2013), https://doi.org/https://doi.org/10.1128/MCB.00469-13.

  • Hwang, H. J., Yang, Y. R., Kim, H. Y., et al., “Phospholipase C-β1 potentiates glucose-stimulated insulin secretion,” FASEB J., 33, No. 10, 10668–10679 (2019), https://doi.org/https://doi.org/10.1096/fj.201802732RR.

  • Ichimura, A., Hasegawa, S., Kasubuchi, M., and Kimura, I., “Free fatty acid receptors as therapeutic targets for the treatment of diabetes,” Front. Pharmacol., 5, 236 (2014), https://doi.org/https://doi.org/10.3389/fphar.2014.00236.

  • Ishihara, H., Asano, T., Tsukuda, K., et al., “Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets,” Diabetologia, 36, No. 11, 1139–1145 (1993), https://doi.org/https://doi.org/10.1007/BF00401058.

  • Itoh, Y., Kawamata, Yu., Harada, M., et al., “Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40,” Nature, 422, No. 6928, 173–176 (2003), https://doi.org/https://doi.org/10.1038/nature01478.

  • Kebede, M. A., Alquier, T., Latour, M. G., and Poitout, V., “Lipid receptors and islet function: therapeutic implications?” Diabetes Obes. Metab., 11, No. 4, 10–20 (2009), https://doi.org/https://doi.org/10.1111/j.1463-1326.2009.01114.x.

  • Kim, M. J., Lee, K. H., Min, D. S., et al., “Distributional patterns of phospholipase C isozymes in rat pancreas,” Pancreas, 22, No. 1, 47–52 (2001b), https://doi.org/https://doi.org/10.1097/00006676-200101000-00008.

  • Kim, M. R., Kusakabe, Y., Miura, H., et al., “Regional expression patterns of taste receptors and gustducin in the mouse tongue,” Biochem. Biophys. Res. Com., 312, No. 2, 500–506 (2003), https://doi.org/https://doi.org/10.1016/j.bbrc.2003.10.137.

  • Kim, S. S., Jun, K., Jeong, M., et al., “Immunohistochemical localization of eight phospholipase C isozymes in pancreatic islets of the mouse,” Exp. Mol. Med., 33, No. 3, 164–168 (2001a), https://doi.org/https://doi.org/10.1038/emm.2001.28.

  • Kojima, I., Medina, J., and Nakagawa, Y., “Role of the glucose-sensing receptor in insulin secretion,” Diabet. Obesity Metab., 19, No. 1, 54–62 (2017), https://doi.org/https://doi.org/10.1111/dom.13013.

  • Komatsu, M., Takei, M., Ishii, H., and Sato, Y., “Glucose-stimulated insulin secretion: A newer perspective,” J. Diabet. Investig., 4, No. 6, 511–516 (2013), https://doi.org/https://doi.org/10.1111/jdi.12094.

  • Kotarsky, K., Nilsson, N. E., Flodgren, E., et al., “A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs,” Biochem. Biophys. Res. Com., 301, No. 2, 406–410 (2003), https://doi.org/https://doi.org/10.1016/s0006-291x(02)03064-4.

  • Kwok-Keung Fung, B. and Stryer, L. J., “Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments,” Proc. Natl. Acad. Sci. USA, 77, No. 5, 2500–2504 (1980), https://doi.org/https://doi.org/10.1073/pnas.77.5.2500.

  • Kyriazis, G. A., Smith, K. R., Tyrberg, B., et al., “Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice,” Endocrinology, 155, No. 6, 2112–2121 (2014), https://doi.org/https://doi.org/10.1210/en.2013-2015.

  • Kyriazis, G. A., Soundarapandian, M. M., and Tyrberg, B., “Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion,” Proc. Natl. Acad. Sci. USA, 109, No. 8, E524–E532 (2012), https://doi.org/https://doi.org/10.1073/pnas.1115183109.

  • Lee, B., Bradford, P. G., and Laychock, S. G., “Characterization of inositol 1,4,5-trisphosphate receptor isoform mRNA expression and regulation in rat pancreatic islets, RINm5F cells and betaHC9 cells,” J. Mol. Endocrinol., 21, No. 1, 31–39 (1998), https://doi.org/https://doi.org/10.1677/jme.0.0210031.

  • Lee, B. and Laychock, S. G., “Inositol 1,4,5-trisphosphate receptor isoform expression in mouse pancreatic islets: effects of carbachol,” Biochem. Pharmacol., 61, No. 3, 327–336 (2001), https://doi.org/https://doi.org/10.1016/s0006-2952(00)00559-1.

  • Leem, J., Shim, H. M., Cho, H., and Park, J. H., “Octanoic acid potentiates glucose-stimulated insulin secretion and expression of glucokinase through the olfactory receptor in pancreatic β-cells,” Biochem. Biophys. Res. Commun., 503, No. 1, 278–284 (2018), https://doi.org/https://doi.org/10.1016/j.bbrc.2018.06.015.

  • Leung, N. Y. and Montell, C., “Unconventional roles of opsins,” Annu. Rev. Cell Dev. Biol., 33, 241–264 (2017), https://doi.org/https://doi.org/10.1146/annurev-cellbio-100616-060432.

  • Li, F. and Zhang, Z. M., “Comparative identification of Ca2+ channel expression in INS-1 and rat pancreatic beta cells,” World J. Gastroenterol., 15, No. 24, 3046–3050 (2009), https://doi.org/https://doi.org/10.3748/wjg.15.3046.

  • Liman, E., “TRPM5 and taste transduction,” Handb. Exp. Pharmacol., 179, 287–298 (2007), https://doi.org/https://doi.org/10.1007/978-3-540-34891-7_17.

  • Marie, J. C., Rosselin, G., and Skoglund, G., “Pancreatic beta-cell receptors and G proteins coupled to adenylyl cyclase,” Ann. N.Y. Acad. Sci., 805, 122–131 (1996), https://doi.org/https://doi.org/10.1111/j.1749-6632.1996.tb17478.x.

  • Medina, A., Nakagawa, Y., Ma, J., et al., “Expression of the glucose-sensing receptor T1R3 in pancreatic islet: changes in the expression levels in various nutritional and metabolic states,” Endocr. J., 61, No. 8, 797–805 (2014), https://doi.org/https://doi.org/10.1507/endocrj.ej14-0221.

  • Medina, J., Nakagawa, Y., Nagasawa, M., et al., “Positive allosteric modulation of the calcium-sensing receptor by physiological concentrations of glucose.” J. Biol. Chem., 291, No. 44, 23,126–23,135 (2016), https://doi.org/https://doi.org/10.1074/jbc.M116.729863.

  • Miyazaki, J., Araki, K., Yamato, E., et al., “Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms,” Endocrinology, 127, No. 1, 126–132 (1990), https://doi.org/https://doi.org/10.1210/endo-127-1-126.

  • Moran, B. M., Abdel-Wahab, Y. H. A., Flatt, P. R., and McKillop, A. M., “Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells,” J. Biol. Chem., 16, No. 11, 1128–1139 (2014), https://doi.org/https://doi.org/10.1111/dom.12330.

  • Munakata, Y., Yamada, T., Imai, J., et al., “Olfactory receptors are expressed in pancreatic β-cells and promote glucose-stimulated insulin secretion,” Sci. Rep., 8, No. 1, 1499–1505 (2018), https://doi.org/https://doi.org/10.1038/s41598-018-19765-5.

  • Murovets, V., Sozontov, E., and Zachepilo, T., “The effect of the taste receptor protein t1r3 on the development of islet tissue of the murine pancreas,” Dokl. Biol. Sci., 484, No. 1, 1–4 (2019), https://doi.org/https://doi.org/10.1134/S0012496619010010

  • Nakagawa, Y., Nagasawa, M., Mogami, et al., “Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: generation of diverse patterns of intracellular signals by sweet agonists,” Endocr. J., 60, No. 10, 1191–1206 (2013), https://doi.org/https://doi.org/10.1507/endocrj.ej13-0282.

  • Nakagawa, Y., Nagasawa, M., Yamada, S., et al., “Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion,” PLoS One, 4, No. 4, e5106 (2009), https://doi.org/https://doi.org/10.1371/journal.pone.0005106.

  • Nakagawa, Y., Ohtsu, Y., Nagasawa, M., et al., “Glucose promotes its own metabolism by acting on the cell-surface glucose-sensing receptor T1R3,” Endocr. J., 61, No. 2, 119–131 (2014), https://doi.org/https://doi.org/10.1507/endocrj.ej13-0431.

  • Nordenskjöld, F., Andersson, B., and Islam, M. S., “Expression of the inositol 1,4,5-trisphosphate receptor and the ryanodine receptor Ca2+- release channels in the beta-cells and alpha-cells of the human islets of Langerhans,” Adv. Experim. Med. Biol., 1131, 271–279 (2020), https://doi.org/https://doi.org/10.1007/978-3-030-12457-1_11.

  • Noushmehr, H., D’Amico, E., Farilla, L., et al., “Fatty acid translocase (FAT/CD36) is localized on insulin-containing granules in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion,” Diabetes, 54, No. 2, 472–481 (2005), https://doi.org/https://doi.org/10.2337/diabetes.54.2.472.

  • Oya, M., Suzuki, H., Watanabe, Y., et al., “Amino acid taste receptor regulates insulin secretion in pancreatic β-cell line MIN6 cells,” Genes Cells, 16, No. 5, 608–616 (2011), https://doi.org/https://doi.org/10.1111/j.1365-2443.2011.01509.x.

  • Ozdener, M. H., Subramaniam, S., Sundaresan, S., et al., “CD36- and GPR120-mediated Ca2+ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice,” Gastroenterology, 146, No. 4, 995–1005 (2014), https://doi.org/https://doi.org/10.1053/j.gastro.2014.01.006.

  • Phan, H. H., Boissard, C., Pessah, M., et al., “Decreased ADP-ribosylation of the Galpha(olf) and Galpha(s) subunits by high glucose in pancreatic β-cells,” Biochem. Biophys. Res. Commun., 271, No. 1, 86–90 (2000), https://doi.org/https://doi.org/10.1006/bbrc.2000.2580.

  • Philippaert, K., Pironet, A., Mesuere, M., et al., “Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity,” Nat. Commun., 8, 14733–14738 (2017), https://doi.org/https://doi.org/10.1038/ncomms14733.

  • Portela-Gomes, G. M. and Abdel-Halim, S. M., “Overexpression of Gs proteins and adenylyl cyclase in normal and diabetic islets,” Pancreas, 25, No. 2, 176–181 (2002), https://doi.org/https://doi.org/10.1097/00006676-200208000-00011.

  • Prawitt, D., Monteilh-Zoller, M. K., Brixel, L., et al., “TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i,” Proc. Natl. Acad. Sci. USA, 100, No. 25, 15166–15171 (2003), https://doi.org/https://doi.org/10.1073/pnas.2334624100.

  • Qian, F., Huang, P., Ma, L., Kuznetsov, A., et al., “TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells,” Diabetes, 51, No. 1, 183–189 (2002), https://doi.org/https://doi.org/10.2337/diabetes.51.2007.s183.

  • Régnauld, K. L., Leteurtre, E., Gutkind, S. J., et al., “Activation of adenylyl cyclases, regulation of insulin status, and cell survival by G(alpha)olf in pancreatic beta-cells,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 282, No. 3, R870–R880 (2002), https://doi.org/https://doi.org/10.1152/ajpregu.00374.2001.

  • Rodríguez-Trelles, F., Tarrío, R., and Ayala, F. J., “Is ectopic expression caused by deregulatory mutations or due to gene-regulation leaks with evolutionary potential?” Bioessays, 27, No. 6, 592–601 (2005), https://doi.org/https://doi.org/10.1002/bies.20241.

  • Romanov, R. A., Rogachevskaja, O. A., Khokhlov, A. A., and Kolesnikov, S. S., “Voltage dependence of ATP secretion in mammalian taste cells,” J. Gen. Physiol., 132, No. 6, 731–744 (2008), https://doi.org/https://doi.org/10.1085/jgp.200810108.

  • Roper, S. D. and Chaudhari, N., “Taste buds: cells, signals and synapses,” Nat. Rev. Neurosci., 18, No. 8, 485–497 (2017), https://doi.org/https://doi.org/10.1038/nrn.2017.68.

  • Rosker, C., Meur, G., Taylor, E. J., and Taylor, C. W., “Functional ryanodine receptors in the plasma membrane of RINm5F pancreatic beta-cells,” J. Biol. Chem., 284, No. 8, 5186–5194 (2009), https://doi.org/https://doi.org/10.1074/jbc.M805587200.

  • Rössler, P., Kroner, C., Freitag, J., et al., “Identification of a phospholipase C beta subtype in rat taste cells,” Eur. J. Cell Biol., 77, No. 3, 253–261 (1998), https://doi.org/https://doi.org/10.1016/s0171-9335(98)80114-3.

  • Salehi, A., Flodgren, E., Nilsson, N. E., et al., “Free fatty acid receptor 1 (FFA1R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion,” Cell. Tiss. Res., 322, No. 2, 207–215 (2005), https://doi.org/https://doi.org/10.1007/s00441-005-0017-z.

  • Schnell, S., Schaefer, M., and Schöfl, C., “Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from β-cells through activation of GPR40,” Mol. Cell. Endocrinol., 263, No. 1–2, 173–180 (2007), https://doi.org/https://doi.org/10.1016/j.mce.2006.09.013.

  • Seed Ahmed, M., Kovoor, A., Nordman, S., et al., “Increased expression of adenylyl cyclase 3 in pancreatic islets and central nervous system of diabetic Goto-Kakizaki rats: a possible regulatory role in glucose homeostasis,” Islets, 4, No. 5, 343–348 (2012), https://doi.org/https://doi.org/10.4161/isl.22283.

  • Shapiro, H., Shachar, S., Sekler, I., et al., “Role of GPR40 in fatty acid action on the β cell line INS-1E,” Biochem. Biophys. Res. Com., 335, No. 1, 97–104 (2005), https://doi.org/https://doi.org/10.1016/j.bbrc.2005.07.042.

  • Shigemura, N., Nakao, K., Yasuo, T., et al., “Gurmarin sensitivity of sweet taste responses is associated with co-expression patterns of T1r2, T1r3, and gustducin,” Biochem. Biophys. Res. Commun., 367, No. 2, 356–363 (2008), https://doi.org/https://doi.org/10.1016/j.bbrc.2007.12.146.

  • Skoglund, G., Basmaciogullari, A., Rouot, B., et al., “Cell-specific localization of G protein alpha-subunits in the islets of Langerhans,” J. Endocrinol., 162, No. 1, 31–37 (1999), https://doi.org/https://doi.org/10.1677/joe.0.1620031.

  • Steneberg, P., Rubins, N., Bartoov-Shifman, R., et al., “The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse,” Cell Metab., 1, No. 4, 245–258 (2005), https://doi.org/https://doi.org/10.1016/j.cmet.2005.03.007.

  • Stumpf, I., Mühlbauer, E., and Peschke, E., “Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells,” J. Pin. Res., 45, No. 3, 318–327 (2008), https://doi.org/https://doi.org/10.1111/j.1600-079X.2008.00593.x.

  • Swatton, J. E., Morris, S. A., Cardy, T. J., and Taylor, C. W., “Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca2+ and mediate quantal Ca2+ mobilization,” Biochem. J., 344, No. 1, 55–60 (1999).

    Article  CAS  Google Scholar 

  • Taneera, J., Lang, S., Sharma, A., et al., “A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets,” Cell Metab., 16, No. 1, 122–134 (2012), https://doi.org/https://doi.org/10.1016/j.cmet.2012.06.006.

  • Tang, B., Chow, J. Y., Dong, T. X., et al., “Calcium sensing receptor suppresses human pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway,” Cancer Lett., 377, No. 1, 44–54 (2016), https://doi.org/https://doi.org/10.1016/j.canlet.2016.04.027.

  • Tomita, T., Masuzaki, H., Iwakura, H., et al., “Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic beta cells and implications for insulin secretion,” Diabetologia, 49, No. 5, 962–968 (2006), https://doi.org/https://doi.org/10.1007/s00125-006-0193-8.

  • Udagawa, H., Hiramoto, M., Kawaguchi, M., et al., “Characterization of the taste receptor-related G-protein, α-gustducin, in pancreatic β-cells,” J. Diabet.Invest., 11, No. 4, 814–822 (2020), https://doi.org/https://doi.org/10.1111/jdi.13214.

  • Wallin, T., Ma, Z., Ogata, H., et al., “Facilitation of fatty acid uptake by CD36 in insulin-producing cells reduces fatty-acid-induced insulin secretion and glucose regulation of fatty acid oxidation,” Biochim. Biophys. Acta, 1801, No. 2, 191–197 (2010), https://doi.org/https://doi.org/10.1016/j.bbalip.2009.11.002.

  • Wong, G. T., Gannon, K. S., and Margolskee, R. F., “Transduction of bitter and sweet taste by gustducin,” Nature, 381, 796–800 (1996).

    Article  CAS  Google Scholar 

  • Wong, S. T., Trinh, K., Hacker, B., et al., “Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice,” Neuron, 27, No. 3, 487–497 (2000), https://doi.org/https://doi.org/10.1016/s0896-6273(00)00060-x.

  • Xue, T., Do, M. T., Riccio, A., et al., “Melanopsin signalling in mammalian iris and retina,” Nature, 479, No. 7371, 67–73 (2011), https://doi.org/https://doi.org/10.1038/nature10567.

  • Yau, K. W. and Hardie, R. C., “Phototransduction motifs and variations,” Cell, 139, No. 2, 246–264 (2009), https://doi.org/https://doi.org/10.1016/j.cell.2009.09.029.

  • Zhang D, So, W. Y., Wang, Y., et al., “Insulinotropic effects of GPR120 agonists are altered in obese diabetic and obese non-diabetic states,” Clin. Sci. (Lond.), 131, No. 3, 247–260 (2017), https://doi.org/https://doi.org/10.1042/CS20160545.

  • Zhang, Y., Hoon, M. A., Chandrashekar, J., et al., “Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways,” Cell, 112, No. 3, 293–301 (2003), https://doi.org/https://doi.org/10.1016/s0092-8674(03)00071-0.

  • Zigman, J. M., Westermark, G. T., LaMendola, J., et al., “Human G(olf) alpha: complementary deoxyribonucleic acid structure and expression in pancreatic islets and other tissues outside the olfactory neuroepithelium and central nervous system,” Endocrinology, 133, No. 6, 2508–2514 (1993), https://doi.org/https://doi.org/10.1210/endo.133.6.8243272.

  • Zigman, J. M., Westermark, G. T., LaMendola, J., and Steiner, D. F., “Expression of cone transducin, Gz alpha, and other G-protein alpha-subunit messenger ribonucleic acids in pancreatic islets,” Endocrinology, 135, No. 1, 31–37 (1994), https://doi.org/https://doi.org/10.1210/endo.135.1.8013366.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Bystrova.

Additional information

Translated from Sensornye Sistemy, Vol. 36, No. 1, pp. 44–60, January–March, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalitskaya, Y.A., Kovalenko, N.P. & Bystrova, M.F. Expression and Functional Role of Olfactory, Taste, and Phototransduction Signal Proteins in β Cells in Islets of Langerhans. Neurosci Behav Physi 52, 757–768 (2022). https://doi.org/10.1007/s11055-022-01300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01300-9

Keywords

Navigation