Skip to main content
Log in

Ontogeny of the Corticolimbic System and the Risk of Anxiety Disorders in Adolescence

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Interactions of the amygdala, frontal cortex, and hippocampus, key structures in the corticolimbic system, play an important role in forming behavioral responses to threatening stimuli. The ontogenetic features of these interactions, both at the level of the formation of afferent and efferent connections between structures and the neurotransmitter and neurotrophic processes taking place within them, may be the causes of increases in the risk of psychoemotional disorders in the adolescent period as compared with earlier and later periods of life. Critical analysis of published data on this question is important for clarifying the mechanisms of formation of adolescent psychopathology and may aid the search for means of correcting it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altman, J. and Bayer, S. A., “Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods,” J. Comp. Neurol., 301, 365–381 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Arruda-Carvalho, M., Wu, W. C., Cummings, K. A., and Clem, R. L., “Optogenetic examination of prefrontal-amygdala synaptic development,” J. Neurosci., 15, 2976–2985 (2017).

    Article  Google Scholar 

  • Ben-Ari, Y., “Excitatory actions of GABA during development: the nature of the nurture,” Nat. Rev. Neurosci., 3, 728–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Berezova, I. V., Shishkina, G. T., Kalinina, T. S., and Dygalo, N. N., “Behavior in the forced-swimming test and expression of BDNF and Bcl-xl genes in the rat brain,” Zh. Vyssh. Nerv. Deyat., 61, No. 3, 332–339 (2011).

    CAS  Google Scholar 

  • Bessières, B., Jia, M., Travaglia, A., and Alberini, C. M., “Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat basolateral amygdala,” Learn. Mem., 15, 436–448 (2019).

    Article  Google Scholar 

  • Bouwmeester, H., Smits, K., and Van Ree, J. M., “Neonatal development of projections to the basolateral amygdala from prefrontal and thalamic structures in rat,” J. Comp. Neurol., 450, 41–55 (2002a). .

    Article  Google Scholar 

  • Bouwmeester, H., Wolterink, G., and van Ree, J. M., “Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat,” J. Comp. Neurol., 442, 239–249 (2002b).

    Article  PubMed  Google Scholar 

  • Bosch, D. and Ehrlich, I., “Postnatal maturation of GABAergic modulation of sensory inputs onto lateral amygdala principal neurons,” J. Physiol., 593, 4387–4409 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummelte, S., Witte, V., and Teuchert-Noodt, G., “Postnatal development of GABA and calbindin cells and fi bers in the prefrontal cortex and basolateral amygdala of gerbils [Meriones unguiculatus],” Int. J. Dev. Neurosci., 25, 191–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Burgos-Robles, A., Kimchi, E. Y., Izadmehr, E. M., et al., “Amygdala inputs to prefrontal cortex guide behavior amid confl icting cues of reward and punishment,” Nat. Neurosci., 20, 824–835 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carney, R. S., Alfonso, T. B., Cohen, D., et al., “Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system,” J. Neurosci., 26, 11562–11574 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey, B. J., Jones, R. M., and Hare, T. A., “The adolescent brain,” Ann. N.Y. Acad. Sci., 1124, 111–126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey, B. J., Glatt, C. E., and Lee, F. S., “Treating the developing versus developed brain: translating preclinical mouse and human studies,” Neuron, 86, 1358–1368 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey, B. J., Heller, A. S., Gee, D. G., and Cohen, A. O., “Development of the emotional brain,” Neurosci. Lett., 693, 29–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Castrén, E. and Kojima, M., “Brain-derived neurotrophic factor in mood disorders and antidepressant treatments,” Neurobiol. Dis., 97, Part B, 119–126 (2017).

  • Chen, M. and Bi, L. L., “Optogenetic long-term depression induction in the PVT-CeL circuitry mediates decreased fear memory,” Mol. Neurobiol., 56, 4855–4865 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z. Y., Jing, D., Bath, K. G., et al., “Genetic variant BDNF [Val66Met] polymorphism alters anxiety-related behavior,” Science, 314, 140– 143 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craske, M. G. and Stein, M. B., “Anxiety,” Lancet, 388, 3048–3059 (2016).

    Article  PubMed  Google Scholar 

  • Crews, F., He, J., and Hodge, C., “Adolescent cortical development: a critical period of vulnerability for addiction,” Pharmacol. Biochem. Behav., 86, 189–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Cullen, K. R., Westlund, M. K., Klimes-Dougan, B., et al., “Abnormal amygdala resting-state functional connectivity in adolescent depression,” JAMA Psychiatry, 71, 1138–1147 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunningham, M. G., Bhattacharyya, S., and Benes, F. M., “Amygdalocortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence,” J. Comp. Neurol., 453, 116–130 (2002).

    Article  PubMed  Google Scholar 

  • Cunningham, M. G., Bhattacharyya, S., and Benes, F. M., “Increasing interaction of amygdalar afferents with GABAergic interneurons between birth and adulthood,” Cereb. Cortex, 18, 1529–1535 (2008).

    Article  PubMed  Google Scholar 

  • Delevich, K., Thomas, A. W., and Wilbrecht, L., “Adolescence and ‘late blooming’ synapses of the prefrontal cortex,” Cold Spring Harb. Symp. Quant. Biol., 83, 37–43 (2018).

    Article  PubMed  Google Scholar 

  • Dulka, B. N., Bagatelas, E. D., Bress, K. S., et al., “Chemogenetic activation of an infralimbic cortex to basolateral amygdala projection promotes resistance to acute social defeat stress,” Sci. Rep., 10, 6884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duman, R. S. and Monteggia, L. M., “A neurotrophic model for stress-related mood disorders,” Biol. Psychiatry, 59, 1116–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Dygalo, N. N., Drozd, U. S., Sukhareva, E. V., et al., “Subanesthetic dose of ketamine relieves depression-like behavior induced by optogenetic stimulation of the hippocampal pyramidal neurons,” Eur. Neuropsychopharmacol., 29, Suppl. 6, S94 (2019).

  • Dygalo, N. N., Kalinina, T. S., and Shishkina, G. T., “Stress-induced expression pattern of glutamate signaling genes associated with anhedonia,” Stress, 2, 1–8, Epub ahead of print (2020a), https://doi.org/10.1080/10253890.2020.1812574.

  • Dygalo, N. N., Lanshakov, D. A., Drozd, U. S., et al., “Optogenetic activation of the CA1 hippocampal pyramidal neurons induces a depressive- like behavioural phenotype,” Eur. Neuropsychopharmacol., 26, Suppl. 2, S277–S278 (2016).

    Article  Google Scholar 

  • Dygalo, N. N., Lanshakov, D. A., Komysheva, N. P., et al., “Chemogenetic activation of glutamatergic neurons in the juvenile rat cortex reduces anxiety,” Dokl. Biochem. Biophys., 490, No. 1, 16–18 (2020b).

    Article  CAS  PubMed  Google Scholar 

  • Edelmann, E., Lessmann, V., and Brigadski, T., “Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity,” Neuropharmacology, 76, Part C, 610–627 (2014).

  • Ehrlich, D. E., Ryan, S. J., and Rainnie, D. G., “Postnatal development of electrophysiological properties of principal neurons in the rat basolateral amygdala,” J. Physiol., 590, 4819–4838 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etkin, A. and Wager, T. D., “Functional neuroimaging of anxiety: a meta- analysis of emotional processing in PTSD, social anxiety disorder, and specifi c phobia,” Am. J. Psychiatry, 164, 1476–1488 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenno, L., Yizhar, O., and Deisseroth, K., “The development and application of optogenetics,” Annu. Rev. Neurosci., 34, 389–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Barrera, E., Thomases, D. R., Heng, L. J., et al., “Late adolescent expression of GluN2B transmission in the prefrontal cortex is input- specifi c and requires postsynaptic protein kinase A and D1 dopamine receptor signaling,” Biol. Psychiatry, 75, 508–516 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Floresco, S. B. and Tse, M. T., “Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway,” J. Neurosci., 27, 2045–2057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gee, D. G., Bath, K. G., Johnson, C. M., et al., “Neurocognitive development of motivated behavior: dynamic changes across childhood and adolescence,” J. Neurosci., 38, 9433–9445 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gee, D. G., Gabard-Durnam, L. J., Flannery, J., et al., “Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation,” Proc. Natl. Acad. Sci. USA, 110, 15638–15643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glendining, K. A., Fisher, L. C., and Jasoni, C. L., “Maternal high fat diet alters offspring epigenetic regulators, amygdala glutamatergic profi le and anxiety,” Psychoneuroendocrinology, 96, 132–141 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Gorba, T., Klostermann, O., and Wahle, P., “Development of neuronal activity and activity-dependent expression of brain-derived neurotrophic factor mRNA in organotypic cultures of rat visual cortex,” Cereb. Cortex, 9, 864–977 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan, A., Rao, B. S., Nair, D., et al., “Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects,” Proc. Natl. Acad. Sci. USA, 103, 13208–13213 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray, J. D., Milner, T. A., and McEwen, B. S., “Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors,” Neuroscience, 239, 214–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Greenberg, M. E., Xu, B., Lu, B., and Hempstead, B. L., “New insights in the biology of BDNF synthesis and release: implications in CNS function,” J. Neurosci., 29,12764–12767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henson, M. A., Tucker, C. J., Zhao, M., and Dudek, S. M., “Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning,” Neurobiol. Learn. Mem., 138, 39–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, C. M., Orsini, C. A., Labiste, C. C., et al., “Optogenetic dissection of basolateral amygdala contributions to intertemporal choice in young and aged rats,” eLife, 8, e46174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Inagaki, R., Moriguchi, S., and Fukunaga, K., “Aberrant amygdala-dependent fear memory in corticosterone-treated mice,” Neuroscience, 388, 448–459 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Insel, T. R., Miller, L. P., and Gelhard, R. E., “The ontogeny of excitatory amino acid receptors in rat forebrain–I. N-methyl-D-aspartate and quisqualate receptors,” Neuroscience, 35, 31–43 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Jasnow, A. M., Ehrlich, D. E., Choi, D. C., et al., “Thy1-expressing neurons in the basolateral amygdala may mediate fear inhibition,” J. Neurosci., 33, 10,396–10,404 (2013).

  • Jin, X., “The role of neurogenesis during development and in the adult brain,” Eur. J. Neurosci., 44, 2291–2299 (2016).

    Article  PubMed  Google Scholar 

  • Kalsbeek, A., Voorn, P., Buijs, R. M., et al., “Development of the dopaminergic innervation in the prefrontal cortex of the rat,” J. Comp. Neurol., 269, 58–72 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., Perry, C. J., Ganella, D. E., and Madsen, H. B., “Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear,” Neurobiol. Learn. Mem., 138, 252–270 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Klavir, O., Prigge, M., Sarel, A., et al., “Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex,” Nat. Neurosci., 20, 836–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kowiański, P., Lietzau, G., Czuba, E., et al., “BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity,” Cell. Mol. Neurobiol., 38, 579–593 (2018).

    Article  PubMed  Google Scholar 

  • Lanshakov, D. A., Drozd, U. S., and Dygalo, N. N., “Optogenetic stimulation increases level of antiapoptotic protein Bcl-xL in neurons,” Biochemistry (Mosc.), 82, 340–344 (2017).

    Article  CAS  Google Scholar 

  • Laviola, G., Macrì, S., Morley-Fletcher, S., and Adriani, W., “Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic infl uence,” Neurosci. Biobehav. Rev., 27, 19–31 (2003).

    Article  PubMed  Google Scholar 

  • Laurie, D. J., Bartke, I., Schoepfer, R., et al., “Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies,” Brain Res. Mol. Brain Res., 51, 23– 32 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Penzo, M. A., Taniguchi, H., et al., “Experience-dependent modifi - cation of a central amygdala fear circuit,” Nat. Neurosci., 16, 332– 339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieb, A., Weston, M., and Kullmann, D. M., “Designer receptor technology for the treatment of epilepsy,” EBioMedicine, 43, 641–649 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, S., Li, X., Chen, Y. H., et al., “Social isolation during adolescence induces anxiety behaviors and enhances fi ring activity in BLA pyramidal neurons via mGluR5 upregulation,” Mol. Neurobiol., 55, 5310– 5320 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Lopez de Armentia, M. and Sah, P., “Development and subunit composition of synaptic NMDA receptors in the amygdala: NR2B synapses in the adult central amygdala,” J. Neurosci., 23, 6876–6883 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, B., “BDNF and activity-dependent synaptic modulation,” Learn. Mem., 10, 86–98 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  • Luján, R., Shigemoto, R., and López-Bendito, G., “Glutamate and GABA receptor signalling in the developing brain,” Neuroscience, 130, 567–580 (2005).

    Article  PubMed  Google Scholar 

  • Luhmann, H. J. and Prince, D. A., “Postnatal maturation of the GABAergic system in rat neocortex,” J. Neurophysiol., 65, 247–263 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Martin, L. J., Furuta, A., and Blackstone, C. D., “AMPA receptor protein in developing rat brain: glutamate receptor-1 expression and localization change at regional, cellular, and subcellular levels with maturation,” Neuroscience, 83, 917–928 (1998).

    Article  CAS  PubMed  Google Scholar 

  • McCullough, K. M., Choi, D., Guo, J., et al., “Molecular characterization of Thy1 expressing fear-inhibiting neurons within the basolateral amygdala,” Nat. Commun., 7, 13149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menshanov, P. N., Lanshakov, D. A., and Dygalo, N. N., “proBDNF is a major product of bdnf gene expressed in the perinatal rat cortex,” Physiol. Res., 64, 925–934 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Monyer, H., Burnashev, N., Laurie, D. J., et al., “Developmental and regional expression in the rat brain and functional properties of four NMDA receptors,” Neuron, 12, 529–540 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Moriceau, S. and Sullivan, R. M., “Maternal presence serves as a switch between learning fear and attraction in infancy,” Nat. Neurosci., 9, 1004–1006 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabavi, S., Fox, R., Proulx, C. D., et al., “Engineering a memory with LTD and LTP,” Nature, 511, 348–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz, S., Latsko, M. S., Fouty, J. L., et al., “Anterior cingulate cortex and ventral hippocampal inputs to the basolateral amygdala selectively control generalized fear,” J. Neurosci., 39, 6526–6539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliaccio, D., Luby, J. L., Bogdan, R., et al., “Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation,” J. Abnorm. Psychol., 124, 817–833 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, H. and Poo, M. M., “Neurotrophin regulation of neural circuit development and function,” Nat. Rev. Neurosci., 14, 7–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Pattwell, S. S. and Bath, K. G., “Emotional learning, stress, and development: An ever-changing landscape shaped by early-life experience,” Neurobiol. Learn. Mem., 143, 36–48 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Premachandran, H., Zhao, M., and Arruda-Carvalho, M., “Sex differences in the development of the rodent corticolimbic system,” Front. Neurosci., 14, 583477 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmusson, A. M., Shi, L., and Duman, R., “Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock,” Neuropsychopharmacology, 27, 133–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rice, D. and Barone, S., Jr., “Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models,” Environ. Health Perspect., 108, 511–533 (2000).

    PubMed  PubMed Central  Google Scholar 

  • Rios, M., Fan, G., Fekete, C., et al., “Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity,” Mol. Endocrinol., 15, 1748–1757 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Ryan, T. J., Roy, D. S., Pignatelli, M., et al., “Memory. Engram cells retain memory under retrograde amnesia,” Science, 348, No. 6238, 1007–1013 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryazantseva, M., Englund, J., Shintyapina, A., et al., “Kainate receptors regulate development of glutamatergic synaptic circuitry in the rodent amygdala,” eLife, 9, e52798 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sah, P., Faber, E. S., Lopez De Armentia, M., and Power, J., “The amygdaloid complex: anatomy and physiology,” Physiol. Rev., 83, 803–834 (2003).

    Article  CAS  Google Scholar 

  • Schipper, P., Brivio, P., de Leest, D., et al., “Impaired fear extinction recall in serotonin transporter knockout rats is transiently alleviated during adolescence,” Brain Sci., 9, 118 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  • Schubert, D., Martens, G. J., and Kolk, S. M., “Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders,” Mol. Psychiatry, 20, 795–809 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Selleck, R. A., Zhang, W., Samberg, H. D., et al., “Limited prefrontal cortical regulation over the basolateral amygdala in adolescent rats,” Sci. Rep., 8, 17171 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Semple, B. D., Blomgren, K., Gimlin, K., et al., “Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species,” Prog. Neurobiol., 106–107, 1–16 (2013).

    Article  PubMed  Google Scholar 

  • Sengupta, A., Winters, B., Bagley, E. E., and McNally, G. P., “Disrupted prediction error links excessive amygdala activation to excessive fear,” J. Neurosci., 36, 385–395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta, A., Yau, J. O. Y., Jean-Richard-Dit-Bressel, P., et al., “Basolateral amygdala neurons maintain aversive emotional salience,” J. Neurosci., 38, 3001–3012 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shishkina, G. T., Kalinina, T. S., Berezova, I. V., et al., “Resistance to the development of stress-induced behavioral despair in the forced swim test associated with elevated hippocampal Bcl-xl expression,” Behav. Brain Res., 213, 218–224 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Shishkina, G. T., Kalinina, T. S., Berezova, I. V., and Dygalo, N. N., “Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fl uoxetine: correlations with serotonin metabolism and depressive-like behavior,” Neuropharmacology, 62, 177– 183 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, A. and Shah, B. H., “Neonatal androgen manipulation differentially affects the development of monoamine systems in rat cerebral cortex, amygdala and hypothalamus,” Brain Res. Dev. Brain Res., 98, 247–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Somerville, L. H., Jones, R. M., and Casey, B. J., “A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues,” Brain Cogn., 72, 124–133 (2010).

    Article  PubMed  Google Scholar 

  • Sparta, D. R., Smithuis, J., Stamatakis, A. M., et al., “Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear,” Front. Behav. Neurosci., 8, 129 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Standley, S., Tocco, G., Tourigny, M. F., et al., “Developmental changes in alpha- amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor properties and expression in the rat hippocampal formation,” Neuroscience, 67, 881–892 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Sternson, S. M. and Roth, B. L., “Chemogenetic tools to interrogate brain functions,” Annu. Rev. Neurosci., 37, 387–407 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Suliman, S., Hemmings, S. M. J., and Seedat, S., “Brain-derived neurotrophic factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis,” Front. Integr. Neurosci., 7, 55 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarazi, F. I. and Baldessarini, R. J., “Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain,” Int. J. Dev. Neurosci., 18, 29–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tipps, M., Marron Fernandez de Velasco, E., Schaeffer, A., and Wickman, K., “Inhibition of pyramidal neurons in the basal amygdala promotes fear learning,” eNeuro, 5, No. 5, ENEURO; 0272-18.2018 (2018).

  • Tole, S. and Grove, E. A., “Detailed fi eld pattern is intrinsic to the embryonic mouse hippocampus early in neurogenesis,” J. Neurosci., 21, 1580–1589 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tovote, P., Fadok, J. P., and Lüthi, A., “Neuronal circuits for fear and anxiety,” Nat. Rev. Neurosci., 16, 317–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Urbán, N. and Guillemot, F., “Neurogenesis in the embryonic and adult brain: same regulators, different roles,” Front. Cell. Neurosci., 8, 396 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • VanTieghem, M. R. and Tottenham, N., “Neurobiological programming of early life stress: Functional development of amygdala-prefrontal circuitry and vulnerability for stress-related psychopathology,” Curr. Top. Behav. Neurosci., 38, 117–136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicini, S., Wang, J. F., Li, J. H., et al., “Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors,” J. Neurophysiol., 79, 555–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Wang, H. and Stradtman, G. G., 3rd, Wang, X. J., and Gao, W. J., “A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex,” Proc. Natl. Acad. Sci. USA, 105, 16791–16796 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnell, K. R., Pecukonis, M., and Redcay, E., “Developmental relations between amygdala volume and anxiety traits: Effects of informant, sex, and age,” Dev. Psychopathol., 30, 1503–1515 (2018).

    Article  PubMed  Google Scholar 

  • Wolff, S. B., Gründemann, J., Tovote, P., et al., “Amygdala interneuron subtypes control fear learning through disinhibition,” Nature, 509, 453–458 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Yin, F., Guo, H., Cui, J., et al., “The basolateral amygdala regulation of complex cognitive behaviours in the fi ve-choice serial reaction time task,” Psychopharmacology (Berlin), 236, 3135–3146 (2019).

    Article  CAS  Google Scholar 

  • Yu, H., Wang, D. D., Wang, Y., et al., “Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants,” J. Neurosci., 32, 4092–4094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun, S., Reynolds, R. P., Petrof, I., et al., “Stimulation of entorhinal cortex- dentate gyrus circuitry is antidepressive,” Nat. Med., 24, 658– 666 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehr, J. L., Todd, B. J., Schulz, K. M., et al., “Dendritic pruning of the medial amygdala during pubertal development of the male Syrian hamster,” J. Neurobiol., 66, 578–590 (2006).

    Article  PubMed  Google Scholar 

  • Zhang, W. and Rosenkranz, J. A., “Effects of repeated stress on age-dependent GABAergic regulation of the lateral nucleus of the amygdala,” Neuropsychopharmacology, 41, 2309–2323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, F., Zhou, X., Moon, C., and Wang, H., “Regulation of brain-derived neurotrophic factor expression in neurons,” Int. J. Physiol. Pathophysiol. Pharmacol., 4, 188–200 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, K. S., Richardson, R., and Baker, K. D., “Maturational changes in prefrontal and amygdala circuits in adolescence: Implications for understanding fear inhibition during a vulnerable period of development,” Brain Sci., 9, 65 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  • Zoratto, F., Altabella, L., Tistarelli, N., et al., “Inside the developing brain to understand teen behavior from rat models: Metabolic, structural, and functional-connectivity alterations among limbic structures across three pre-adolescent stages,” Front. Behav. Neurosci., 12, 208 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Dygalo.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 71, No. 4, pp. 439–452, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dygalo, N.N. Ontogeny of the Corticolimbic System and the Risk of Anxiety Disorders in Adolescence. Neurosci Behav Physi 52, 277–286 (2022). https://doi.org/10.1007/s11055-022-01235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01235-1

Keywords

Navigation