Skip to main content
Log in

The “One Neuron–One Receptor” Rule in the Physiology and Genetics of Olfaction

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The phenomenal sensitivity of the olfactory system and its ability to detect an enormous diversity of olfactory stimuli are to a large extent due to the existence of numerous olfactory receptors. The genes encoding olfactory receptors (OR) form the largest family in mammalian genomes. The defining principle in the model of olfactory information encoding is the “one neuron–one receptor” rule, whereby just one gene of the OR gene family is selected for expression in each of the 107 olfactory neurons located in the olfactory epithelium. Although the physiological appropriateness of the “one neuron–one receptor” principle is undoubted, the rule is essentially hypothetical in nature and has not been verified experimentally to the necessary level. In particular, the question of the epigenetic mechanisms of stochastic, monogenic, and monoallelic expression of OR genes remains open. The results of deep sequencing of the transcriptomes of single cells unexpectedly revealed multireceptor neurons containing transcripts for several OR genes. Does this mean that the rule which more than 25 years ago was believed to be physiologically confirmed, unshakeable, and unarguable does not operate? This review will present different interpretations of results from studies of the transcriptomes of single olfactory neurons which explain the existence of “multireceptor” neurons and their role in the process of olfactory neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Barrios, P. Sánchez-Quinteiro, and I. Salazar, “Dog and mouse: toward a balanced view of the mammalian olfactory system,” Front. Neuroanat., 8, 106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. K. Bleymehl, A. Pérez-Gómez, M. Omura, et al., “A sensor for low environmental oxygen in the mouse main olfactory epithelium,” Neuron, 92, 1196–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Breer, J. Fleischer, and J. Strotmann, “The sense of smell: multiple olfactory subsystems,” Cell. Mol. Life Sci., 63, 1465–1475 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. P. A. Brennan and F. Zufall, “Pheromonal communication in vertebrates,” Nature, 444, 308–315 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. L. Buck and R. Axel, “A novel multigene family may encode odorant receptors: a molecular basis for odor recognition,” Cell, 65, 175–187 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. R. P. Dalton, D. B. Lyons, and S. Lomvardas, “Co-opting the unfolded protein response to elicit olfactory receptor feedback,” Cell, 155, 321–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. C. Flegel, S. Manteniotis, S. Osthold, et al., “Expression profile of ectopic olfactory receptors determined by deep sequencing,” PLoS One, 8, e55368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. G. Glusman, I. Yanai, I. Rubin, and D. Lancet, “The complete human olfactory subgenome,” Genome Res., 11, 685–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. J. A. Gogos, J. Osborne, A. Nemes, et al., “Genetic ablation and restoration of the olfactory topographic map,” Cell, 103, 609–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. P. P. Graziadei and G. A. Monti Graziadei, “Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons,” J. Neurocytol., 8, 1–18 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. N. K. Hanchate, K. Kondoh, Z. Lu, et al., “Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis,” Science, 350, 1251–1255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Imai, H. Sakano, and L. B. Vosshall, “Topographic mapping – the olfactory system,” Cold Spring Harb. Perspect. Biol., 2, a001776 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. T. Ishii, S. Serizawa, A. Kohda, et al., “Monoallelic expression of the odorant receptor gene and axonal projection of olfactory sensory neurons,” Genes Cells, 6, 71–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Jiang and H. Matsunami, “Mammalian odorant receptors: functional evolution and variation,” Curr. Opin. Neurobiol., 34, 54–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. A. Johnson, L. Tsai, D. S. Roy, et al., “Neurons expressing trace amine-associated receptors project to discrete glomeruli and constitute an olfactory subsystem,” Proc. Natl. Acad. Sci. USA, 109, 13410–13415 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Kuhn, “Molecular physiology of membrane guanylyl cyclase receptors,” Physiol. Rev., 96, 751–804 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. T. Leinders-Zufall, R. E. Cockerham, S. Michalakis, et al., “Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium,” Proc. Natl. Acad. Sci. USA, 104, 14507–14512 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. W. Lewcock and R. R. Reed, “A feedback mechanism regulates monoallelic odorant receptor expression,” Proc. Natl. Acad. Sci. USA, 101, 1069–1074 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Q. Li, “Deorphanization of olfactory trace amine-associated receptors,” Meth. Mol. Biol., 1820, 21–31 (2018).

    Article  CAS  Google Scholar 

  20. T. Liberia, E. Martin-Lopez, S. J. Meller, and C. A. Greer, “Sequential maturation of olfactory sensory neurons in the mature olfactory epithelium,” eNeuro, 6, P.ENEURO.0266-19 (2019).

  21. S. D. Liberles, “Trace amine-associated receptors: ligands, neural circuits, and behaviors,” Curr. Opin. Neurobiol., 34, 1–7 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Lomvardas, G. Barnea, D. J. Pisapia, et al., “Interchromosomal interactions and olfactory receptor choice,” Cell, 126, 403–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. A. Mackay-Sim and P. W. Kittel, “On the life span of olfactory receptor neurons,” Eur. J. Neurosci., 3, 209–215 (1991).

    Article  PubMed  Google Scholar 

  24. B. Malnic, J. Hirono, T. Sato, and L. B. Buck, “Combinatorial receptor codes for odors,” Cell, 96, 713–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. E. Markenscoff-Papadimitriou, W. E. Allen, B. M. Colquitt, et al., “Enhancer interaction networks as a means for singular olfactory receptor expression,” Cell, 159, 543–557 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. F. Moine, J. Brechbühl, M. Nenniger Tosato, et al., “Alarm pheromone and kairomone detection via bitter taste receptors in the mouse Grueneberg ganglion,” BMC Biol., 16, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. P. Mombaerts, “Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited,” Curr. Opin. Neurobiol., 14, 31–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. P. Mombaerts, “Axonal wiring in the mouse olfactory system,” Ann. Rev. Cell. Dev. Biol., 22, 713–737 (2006).

    Article  CAS  Google Scholar 

  29. K. Monahan, A. Horta, and S. Lomvardas, “LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice,” Nature, 565, 448–453 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. K. Monahan, I. Schieren, and J. Cheung, et al., “Cooperative interactions enable singular olfactory receptor expression in mouse olfactory neurons,” eLife, 21, 6 (2017).

    Google Scholar 

  31. E. E. Morrison and R. M. Costanzo, “Morphology of olfactory epithelium in humans and other vertebrates,” Microsc. Res. Tech., 23, 49–61 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. D. G. Moulton, “Spatial patterning of response to odors in the peripheral olfactory system,” Physiol. Rev., 56, 578–593 (1976).

    Article  CAS  PubMed  Google Scholar 

  33. S. D. Munger, T. Leinders-Zufall, L. M. McDougall, et al., “An olfactory subsystem that detects carbon disulfi de and mediates food-related social learning,” Curr. Biol., 20, 1438–1444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. T. Nakamura and G. H. Gold, “A cyclic nucleotide-gated conductance in olfactory receptor cilia,” Nature, 325, 442–444 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. K. Narusuye, F. Kawai, and E.-I. Miyachi, “Spike encoding of olfactory receptor cells,” Neurosci. Res., 46, 407–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Y. Niimura, A. Matsui, and K. Touhara, “Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals,” Genome Res., 24, 1485–1496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Niimura and M. Nei, “Extensive gains and losses of olfactory receptor genes in mammalian evolution,” PLoS One, 2, e708 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. M. Omura and P. Mombaerts, “Trpc2-expressing sensory neurons in the main olfactory epithelium of the mouse,” Cell Rep., 8, 583–595 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. M. Omura and P. Mombaerts, “Trpc2-expressing sensory neurons in the mouse main olfactory epithelium of type B express the soluble guanylate cyclase Gucy1b2,” Mol. Cell. Neurosci., 6, 114–124 (2015).

    Article  Google Scholar 

  40. S. Pifferi, V. Cenedese, and A. Menini, “Anoctamin2/TMEM16B: a calcium-activated chloride channel in olfactory transduction,” Exp. Physiol., 97, 193–199 (2001).

    Article  Google Scholar 

  41. K. J. Ressler, S. L. Sullivan, and L. B. Buck, “A zonal organization of odorant receptor gene expression in the olfactory epithelium,” Cell, 73, 597–609 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. K. J. Ressler, S. L. Sullivan, and L. B. Buck, “Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb,” Cell, 79, 1245–1255 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. L. R. Saraiva, X. Ibarra-Soria, and K. Khan, et al., “Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq,” Sci. Rep., 5, 18178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. E. Schwob, W. Jang, and E. H. Holbrook, et al., “Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license,” J. Comp. Neurol., 525, 1034–1054 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. E. Schultz, “Repair of the olfactory mucosa with special reference to regeneration of olfactory cells (sensory neurons),” Am. J. Pathol., 37, 1–19 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. S. Serizawa, K. Miyamichi, H. Nakatani, et al., “Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse,” Science, 302, 2088–2094 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. S. Serizawa, K. Miyamichi, and H. Sakano, “One neuron-one receptor rule in the mouse olfactory system,” Trends Genet., 20, 648–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. B. M. Shykind, S. C. Rohani, S. O’Donnell, et al., “Gene switching and the stability of odorant receptor gene choice,” Cell, 117, 801–815 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. C. G. Smith, “Regeneration of sensory olfactory epithelium and nerves in adult frogs,” Anat. Rec., 109, 661–671 (1951).

    Article  CAS  PubMed  Google Scholar 

  50. L. Tan, Q. Li, and X. S. Xie, “Olfactory sensory neurons transiently express multiple olfactory receptors during development,” Mol. Syst. Biol., 11, 844 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. L. Tan, D. Xing, N. Daley, and X. S. Xie, “Three-dimensional genome structures of single sensory neurons in mouse visual and olfactory systems,” Nat. Struct. Mol. Biol., 26, 297–307 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. R. Vassar, S. K. Chao, and R. Sitcheran, “Topographic organization of sensory projections to the olfactory bulb,” Cell, 79, 981–991 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. R. Vassar, J. Ngai, and R. Axel, “Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium,” Cell, 74, 309–318 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. S. L. Youngentob, P. F. Kent, and F. L. Margolis, “OMP gene deletion results in an alteration in odorant-induced mucosal activity patterns,” J. Neurophysiol, 90, 3864–3873 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. X. Zhang, X. Zhang, and S. Firestein, “Comparative genomics of odorant- and pheromone receptor genes in rodents,” Genomics, 89, 441–450 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. J. Zheng and W. N. Zagotta, “Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels,” Neuron, 42, 411–421 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Bystrova.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 51, No. 3, pp. 3–15, July–September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bystrova, M.F., Kolesnikov, S.S. The “One Neuron–One Receptor” Rule in the Physiology and Genetics of Olfaction. Neurosci Behav Physi 51, 1008–1017 (2021). https://doi.org/10.1007/s11055-021-01159-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01159-2

Keywords

Navigation