Skip to main content
Log in

Effects of Prenatal and Early Postnatal Administration of Valproate on Behavior and Cyhtological Characteristics in Wistar Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Prenatal administration of valproic acid (VA) and its salts is a common approach to modeling impairments to nervous system development; the sequelae of postnatal VA administration have received significantly less study. This study compared the behavioral characteristics of two groups of infant mice exposed to sodium valproate pre- and postnatally; neurocytological methods were also used. Behavioral studies were started from the early postnatal period and ended at age 36 days. Comparison of models showed a delay in early motor development and hyperactivity in both cases, though decreases in interest in new social contacts (interaction with rat pups of the same age) were seen only in animals given postnatal VA injections. In addition, a significant increase in the number of perineuronal satellite oligodendrocytes was seen in the anterior cingulate cortex of animals in both series – pre- and postnatal VA. Studies of the cingulate cortex, a component of the limbic system, are important in considering social interactions and the processes forming and regulating emotional behavior, as well as pathological reactions in different impairments to higher brain functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allman, J. M., Hakeem, A., Erwin, et al., “The anterior cingulate cortex,” Ann. N.Y. Acad. Sci., 935, No. 1, 107–117 (2006), https://doi.org/10.1111/j.1749-6632.2001.tb03476.x.

  • Altman, J. and Bayer, S. A., “Development of the brain stem in the rat. Thymidine-radiographic study of the time of origin of neurons of the lower medulla,” J. Comp. Neurol., 194, No. 1, 1–35 (1980).

    Article  CAS  Google Scholar 

  • Bambini-Junior, V., Zanatta, G., Della Flora Nunes, et al., “Resveratrol prevents social deficits in animal model of autism induced by valproic acid,” Neurosci. Lett., 583, 176–181 (2014).

  • Baronio, D., Castro, K., Gonchoroski, T., et al., “Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid,” PLoS One, 10, No. 1 (2015), https://doi.org/10.1371/journal.pone.0116363.

  • Bayer, S. A., Altman, J., Russo, R. J., and Zhang, X., “Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat,” Neurotoxicology, 14, 83–144 (1993).

    CAS  PubMed  Google Scholar 

  • Bernhardi von R., Glial Cells in Health and Disease of the CNS, Springer Nature, Cham, Switzerland (2016).

    Book  Google Scholar 

  • Bhat, A. N., Galloway, J. C., and Landa, R. J., “Relation between early motor delay and later communication delay in infants at risk for autism,” Infant Behav. Dev., 35, 838–846 (2012).

    Article  CAS  Google Scholar 

  • Binkerd, P. E., Rowland, J.M., Nau, H., and Hendrickx, A. G., “Evaluation of valproic acid, VPA developmental toxicity and pharmacokinetics in Sprague–Dawley rats,” Fundam. Appl. Toxicol., 11, 485–23 (1988).

    Article  CAS  Google Scholar 

  • Blatt, G. J. and Fatemi, S. H., “Alterations in GABAergic biomarkers in the autism brain: research findings and clinical implications,” Integr. Anat. Evol. Biol., 294, 1646–1652 (2011).

    Article  CAS  Google Scholar 

  • Bouras, C., Kovari, E., Hof, P. R., et al., “Anterior cingulate cortex pathology in schizophrenia and bipolar disorder,” Acta Neuropathol., 102, No. 4, 373–379 (2001).

    Article  CAS  Google Scholar 

  • Bronzuoli, M. R., Facchinetti, R., Ingrassia, D., et al., “Neuroglia in the autistic brain: evidence from a preclinical model,” Mol. Autism, 9, Art. No. 66 (2018).

  • Campolongo, M., Kazlauskas, N., Falasco, G., et al., “Sociability deficits after prenatal exposure to valproic acid are rescued by early social enrichment,” Mol. Autism, 14, No. 9, 36 (2018).

  • Dai, Y. C., Zhang, H. F., Schon, M., et al., “Neonatal oxytocin treatment ameliorates autistic-like behaviors and oxytocin deficiency in valproic acid-induced rat model of autism,” Front. Cell. Neurosci., 12, 355 (2018).

    Article  CAS  Google Scholar 

  • Dewar, D., Underhill, S. M., and Goldberg, M. P., “Oligodendrocytes and ischemic brain injury,” J. Cereb. Blood Flow Metab., 23, 263– 274 (2003).

    Article  Google Scholar 

  • Drevets, W. C., Savitz, J., and Trimble, M., “The subgenual anterior cingulate cortex in mood disorders,” CNS Spectr., 13, No. 8, 663–681 (2008).

    Article  Google Scholar 

  • Haberer, L. J. and Pollack, G. M., “Disposition and protein binding of valproic acid in the developing rat,” Drug Metab. Dispos., 22, 113–119 (1994).

    CAS  PubMed  Google Scholar 

  • Haroutunian, V., Katsel, P., Roussos, P., et al., “Myelination, oligodendrocytes, and serious mental illness,” Glia, 62, No. 11, 1856–1877 (2014).

  • Ingram, J. L., Peckham, S. M., Tisdale, B., and Rodier, P. M., “Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism,” Neurotoxicol. Teratol., 22, 319–24 (2000).

    Article  CAS  Google Scholar 

  • Kazlauskas, N., Campolongo, M., Lucchina, L., et al., “Postnatal behavioral and inflammatory alterations in female pups prenatally exposed to valproic acid,” Psychoneuroendocrinology, 72, 11–21 (2016).

    Article  CAS  Google Scholar 

  • Kim, K. C., Gonzales, E. L., Lazaro, M. T., et al., “Clinical and neurobiological relevance of current animal models of autism spectrum disorders,” Biomol. Ther. (Seoul), 24, 207–243 (2016).

  • Ludwin, S. K., “The function of perineuronal satellite oligodendrocytes: an immunohistochemical study,” Neuropathol. Appl. Neurobiol., 10, No. 2, 143–149 (1984).

    Article  CAS  Google Scholar 

  • Malyshev, A. V., Experimental Modeling of Autistic Spectrum Disorders and Depression; the Search for Pathways to Peptidergic Correction: Dissert. Cand. Biol. Sci., Moscow (2014).

  • McCrea, D. A. and Rybak, I. A., “Organization of mammalian locomotor rhythm and pattern generation,” Brain Res. Rev., 57, 134–146 (2008).

    Article  Google Scholar 

  • Mony, T. J., Lee, J. W., Dreyfus, C., et al., “Valproic acid exposure during early postnatal gliogenesis leads to autistic-like behaviors in rats,” Clin. Psychopharmacol. Neurosci., 14, 338–344 (2016).

    Article  CAS  Google Scholar 

  • Nicolini, C. and Fahnestock, M., “The valproic acid-induced rodent model of autism,” Exp. Neurol., 299. Part A, 217–227 (2018).

  • Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, Academic Press (2007).

  • Pereverzeva, D. S. and Gorbachevskaya, N. L., “Neurobiological markers of the early stages of autistic spectrum disorders,” Zh. Vyssh. Nerv. Deyat., 66, No. 3, 289–301 (2016).

    CAS  Google Scholar 

  • Reynolds, S., Millette, A., and Devine, D. P., “Sensory and motor characterization in the postnatal valproate rat model of autism,” Dev. Neurosci., 34, 258–267 (2012).

    Article  CAS  Google Scholar 

  • Rodier, P. M., Ingram, J. L., Tisdale, B., and Croog, V. J., “Linking etiologies in humans and animal models: Studies of autism,” Reprod. Toxicol., 11, 417–422 (1997).

    Article  CAS  Google Scholar 

  • Schneider, T. and Przewłocki, R., “Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism,” Neuropsychopharmacology, 30, 80–89 (2005).

    Article  CAS  Google Scholar 

  • Štefanik, P., Olexova, L., and Krškova, L., “Increased sociability and gene expression of oxytocin and its receptor in the brains of rats affected prenatally by valproic acid,” Pharmacol. Biochem. Behav., 131, 42–50 (2015).

    Article  Google Scholar 

  • Tanti, A., Kim, J. J., Wakid, M., et al., “Child abuse associates with an imbalance of oligodendrocyte-lineage cells in ventromedial prefrontal white matter,” Mol. Psychiatry, 23, No. 10, 2018–2028 (2018).

    Article  CAS  Google Scholar 

  • The Open Field Test, OpenScience, Russia, http://www.openscience.ru/index.php?page=ts&item=001&lang=en&lang=ru, acc. April 11, 2019.

  • Verkhratsky, A. and Butt, A., “Oligodendrocytes,” in: Glial Physiology and Pathophysiology, John Wiley & Sons (2013), pp. 245–319.

  • Verkhratsky, A., Ho, M. S., Vardjan, N., et al., “General pathophysiology of astroglia,” Adv. Exp. Med. Biol., 1175, 149–179 (2019).

    Article  CAS  Google Scholar 

  • Vostrikov, V. M., Uranova, N. A., and Orlovskaya, D. D., “Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders,” Schizophr. Res., 94, 273–280 (2007).

    Article  Google Scholar 

  • Williams, G., King, J., Cunningham, M., et al., “Fetal valproate syndrome and autism: additional evidence of an association,” Dev. Med. Child Neurol., 43, No. 3, 202–206 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Gedzun.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 5, pp. 682–695, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gedzun, V.R., Svinov, M.M., Sarycheva, N.Y. et al. Effects of Prenatal and Early Postnatal Administration of Valproate on Behavior and Cyhtological Characteristics in Wistar Rats. Neurosci Behav Physi 51, 639–647 (2021). https://doi.org/10.1007/s11055-021-01117-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01117-y

Keywords

Navigation