Skip to main content
Log in

Cognitive Dysfunction in the Offspring of Rats with Experimental Preeclampsia at the Early and Late Stages of Ontogeny and Its Correction with GABA Derivatives

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We report here studies of cognitive impairments at different periods of ontogeny in the offspring of rats with experimental preeclampsia modeled by replacement of drinking water with 1.8% sodium chloride solution from day 1 to day 21 of gestation. The offspring of females with complications of pregnancy, at both the early (40 days and three months) and late (six and 12 months) stages of individual development showed decreases in working memory in the novel object recognition test, degraded formation and retention of memory traces in the conditioned passive avoidance reflex test, and more marked amnesia in response to scopolamine at a dose of 1.75 mg/kg on testing for retention of memory traces. Oral treatment of the offspring of females with experimental preeclampsia at pubertal age (from day 40 to day 70 of life) with GABA derivatives succicard, salifen, and phenibut, and reference agent pantogam, promoted decreases in cognitive deficit in animals at different periods of postnatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Curtis, A. Sood, T. Phillips, et al., “Secretions from placenta, after hypoxia/reoxygenation, can damage developing neurones of brain under experimental conditions,” Exp. Neurol., 261, 386–395 (2014).

    Article  CAS  Google Scholar 

  2. S. Miller, P. Huppi, and C. Mallard, “The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome,” J. Physiol., 594, No. 4, 807–823 (2016).

    Article  CAS  Google Scholar 

  3. T. Phillips, H. Scott, D. Menassa, et al., “Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development,” Sci. Rep., 7, 1–16 (2017).

    Article  Google Scholar 

  4. F. Dang, B. A. Croy, P. W. Stroman, and E. A. Figueiró-Filho, “Impacts of preeclampsia on the brain of the offspring,” Rev. Bras. Ginecol. Obstet., 38, No. 8, 416–22 (2016).

    Article  Google Scholar 

  5. A. J. Whitehouse, M. Robinson, J. P. Newnham, and C. E. Pennell, “Do hypertensive diseases of pregnancy disrupt neurocognitive development in offspring?” Paediatr. Perinat. Epidemiol., 26, No. 2, 101–108 (2012).

    Article  Google Scholar 

  6. A. Many, A. Fattal, Y. Leitner, et al., “Neurodevelopmental and cognitive assessment of children born growth restricted to mothers with and without preeclampsia,” Hypertens. Pregnancy, 22, No. 1, 25–29 (2003).

    Article  Google Scholar 

  7. E. Morsing and K. Maršál, “Preeclampsia – an additional risk factor for cognitive impairment at school age after intrauterine growth restriction and very preterm birth,” Early Hum. Dev., 90, No. 2, 99– 101 (2014).

    Article  CAS  Google Scholar 

  8. S. Tuovinen, J. G. Eriksson, E. Kajantie, and K. Räikkönen, “Maternal hypertensive pregnancy disorders and cognitive functioning of the offspring: a systematic review,” J. Am. Soc. Hypertens., 8, No. 11, 832–847 (2014).

    Article  Google Scholar 

  9. S. Tuovinen, K. Räikkönen, E. Kajantie, et al., “Depressive symptoms in adulthood and intrauterine exposure to preeclampsia: the Helsinki Birth Cohort Study,” Br. J. Obstet .Gynaecol., 117, No. 10, 1236–1242 (2010).

  10. N. N. Nalivaeva, A. J. Turnerand, and I. A. Zhuravin, “Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration,” Front. Neurosci., 12, 825 (2018).

    Article  Google Scholar 

  11. I. N. Tyurenkov, V. N. Perfilova, L. I. Mikhailova, et al., “Comparative study of the effects of new neuroactive amino acids on the postnatal development of the offspring of rats with experimental preeclampsia,” Vestn. Ross. Akad. Med. Nauk, 69, No. 9–10, 123–130 (2014).

    Article  Google Scholar 

  12. I. N. Tyurenkov, V. N. Perfilova, V. I. Karamysheva, et al., “The pregnant- protecting actions of phenibut in experimental preeclampsia,” Eksperim. Klin. Farmacol., 77, No. 11, 6–10 (2014).

    CAS  Google Scholar 

  13. N. E. Ordyan, V. K. Akulova, S. G. Pivina, et al., “Perinatal hypoxia-induced impairments of behavioral and hormonal stress responses in adolescent rats and their correction by a novel GABA derivative,” Zh. Evolyuts. Biokhim. Fiziol., 55, No. 1, 59–64 (2019).

    Article  Google Scholar 

  14. A. Represa and Y. Ben-Ari, “Trophic actions of GABA on neuronal development,” Trends Neurosci., 28, No. 6, 278–283 (2005).

    Article  CAS  Google Scholar 

  15. I. N. Tyurenkov, V. N. Perfilova, L. B. Reznikova, et al., “GABA derivatives citrocard and salifen reduce the intensity of experimental gestosis,” Byull. Eksperim. Biol. Med., 157, No. 1, 49–52 (2014).

    Article  Google Scholar 

  16. I. N. Tyurenkov, S. A. Lebedeva, V. N. Perfilova, et al., “Changes in the functioning of the microcirculation system under the influence of a new GABA derivative – the compound RGPU-147 – on exposure to chronic stress,” Regionarn. Krovoobrash. Mikrotsirk., 4, 64–67 (2007).

    Google Scholar 

  17. A. N. Mironov, Guidelines for Preclinical Studies of Drugs, Grif i K, Moscow (2012).

    Google Scholar 

  18. S. V. Lobzin, M. G. Sokolova, and S. A. Nal’kin, “Influences of dysfunction of the cholinergic system of the brain on the state of cognitive functions (literature review),” Vestn. Sev. Zap. Gos. Med. Univ. im. Mechnikova, 9, No. 4, 53–58 (2017).

    Google Scholar 

  19. I. N. Tyurenkov, V. N. Perfilova, L. I. Lashchenova, et al., “A study of the mental functions of offspring of rats with experimental preeclampsia in postnatal ontogeny,” Zh. Vyssh. Nerv. Deyat., 66, No. 4, 499–510 (2016).

    CAS  Google Scholar 

  20. D. V. Blinov and A. A. Terent’ev, “Protein markers of hypoxic-ischemic lesions of the CNS in the perinatal period,” Neirokhimiya, 10, No. 2, 22–28 (2013).

  21. V. N. Perfilova, G. A. Zhakupova, L. I. Lashchenova, et al., “Spatial memory in the progeny of rats subjected with different models of experimental preeclampsia,” Byull. Eksperim. Biol. Med., 161, No. 5, 581–584 (2016).

    Google Scholar 

  22. X. Liu, W. Zhao, H. Liu, et al., “Developmental and Functional Brain Impairment in Offspring from Preeclampsia-like rats,” Mol. Neurobiol., 53, No. 2, 1009–1019 (2016).

    Article  CAS  Google Scholar 

  23. O. Cauli, S. Herraiz, B. Pellicer, et al., “Treatment with sildenafil prevents impairment of learning in rats born to pre-eclamptic mothers,” Neuroscience, 171, No. 2, 506–12 (2010).

  24. V. R. Kay, M. T. Ratsep, E. A. Figueiro-Filho, and B. A. Croy, “Preeclampsia may influence off-spring neuroanatomy and cognitive function: a role for placental growth factor,” Biol. Reprod., 101, No. 2, 1–13 (2019).

  25. E. G. Kochkina, S. A. Plesneva, I. A. Zhuravin, et al., “Effect of hypoxia on cholinesterase activity in rat sensorimotor cortex,” Zh. Evolyuts. Biokhim. Fiziol., 51, No. 2, 107–116 (2015).

    CAS  Google Scholar 

  26. A. Beer, T. A. Slotkin, F. J. Seidler, et al., “Nicotine therapy in adulthood reverses the synaptic and behavioral deficits elicited by prenatal exposure to phenobarbital,” Neuropsychopharmacology, 30, No. 1, 156–65 (2005).

  27. D. Attwell and C. Iadecola, “The neural basis of functional brain imaging signals,” Trends Neurosci., 25, No. 12, 621–625 (2002).

    Article  CAS  Google Scholar 

  28. V. N. Perfilova and L. E. Borodkina, “Involvement of the gammaaminobutyric acidergic system in the regulation of cerebral blood flow,” Vestn. Ross. Voenno-Med. Akad., 1, No. 45, 203–211 (2014).

    Google Scholar 

  29. V. V. Vostrikov, “The place of piracetam in contemporary practical medicine,” Obz. Klin. Farmakol. Lek. Ter., 15, No. 1, 14–25 (2017).

    Article  Google Scholar 

  30. S. G. Burchinskii, “GABAergic substances in the pharmacotherapy of chronic cerebral ischemia,” Mezdunarod. Nevrol. Zh., 1, No. 71, 101–105 (2015).

    Google Scholar 

  31. G. A. Voronina, Pantogam and Pantogam Active. Clinical Application and Fundamental Research, Triada-Farm, Moscow (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Muzyko.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 6, pp. 765–782, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzyko, E.A., Tkacheva, G.A., Perfilova, V.N. et al. Cognitive Dysfunction in the Offspring of Rats with Experimental Preeclampsia at the Early and Late Stages of Ontogeny and Its Correction with GABA Derivatives. Neurosci Behav Physi 51, 372–380 (2021). https://doi.org/10.1007/s11055-021-01081-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01081-7

Keywords

Navigation