Skip to main content
Log in

Comparison of the Tripartite Organization of Synaptic Terminals in Intraocular Septal Transplants and in the Septal Area of the Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The septal area of the brain is functionally connected to other limbic structures and is involved in cognitive processes. Intraocular neural transplants provide an experimental model for studying the endogenous morphofunctional properties of the septum. The aim of the present work was to compare the structure of synaptic contacts in septal intraocular neural transplants and in the septal area of the brain in situ. Neurons are regarded as thee-component complexes including not only pre- and postsynaptic components, but also the astrocyte processes encircling them. Ultrastructural studies showed that despite the absence of normal afferent and efferent connections in intraocular neural transplants, their synapses reproduced the tripartite organization. Morphometric analysis of their parameters showed a decrease in the statistical mean area and perimeter of the presynaptic compartment as compared with normal. At the same time, the extent of encirclement by perisynaptic astrocyte processes in transplants was, conversely, significantly greater than in the septum in situ. The mean extents of active zones in synaptic profiles in transplanted neurons was greater than that in controls. The morphometric data obtained here indicate coordinated regulation of the sizes of the three compartments of synapses depending on the functional state of the synaptic apparatus overall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araque, A., Parpura, V., Sanzgiri, R. P., and Haydon, P. G., “Tripartite synapses: glia, the unacknowledged partner,” Trends Neurosci., 22, No. 5, 208–215 (1999).

    Article  CAS  Google Scholar 

  • Bragin, A. G. and Vinogradova, O. S., “Comparison of neuronal activity in septal and hippocampal grafts developing in the anterior eye chamber of the rat,” Brain Res., 312, No. 2, 279–286 (1983).

    Article  CAS  Google Scholar 

  • Chung, W. S., Allen, N. J., and Eroglu, C., “Astrocytes control synapse formation, function, and elimination,” Cold Spring Harb. Perspect. Biol., 7, No. 9, a020370 (2015), https://doi.org/10.1101/cshperspect.a020370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes, D. and Carvalho, A. L., “Mechanisms of homeostatic plasticity in the excitatory synapse,” J. Neurochem., 139, No. 6, 973–996 (2016).

    Article  CAS  Google Scholar 

  • Geinisman, Y., “Structural synaptic modifications associated with hippocampal LTP and behavioral learning,” Cereb. Cortex, 10, No. 10, 952–962 (2000).

    Article  CAS  Google Scholar 

  • Ghezali, G., Dallerac, G., and Rouach, N., “Perisynaptic astroglial processes: dynamic processors of neuronal information,” Brain Struct. Funct., 221, 2427–2442 (2016).

    Article  Google Scholar 

  • Gray, E. G., “Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study,” J. Anat, 93, 420–433 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan, U. and Singh, S. K., “The astrocyte-neuron interface: An overview on molecular and cellular dynamics controlling formation and maintenance of the tripartite synapse,” Methods Mol. Biol., 1938, 3–18 (2019).

    Article  CAS  Google Scholar 

  • Lushnikova, I., Skibo, G., Muller, D., and Nikonenko, I., “Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus,” Hippocampus, 19, 753–762 (2009).

    Article  Google Scholar 

  • Meyer, D., Bonhoeffer, T., and Scheuss, V., “Balance and stability of synaptic structures during synaptic plasticity,” Neuron, 82, No. 2, 430–443 (2014).

    Article  CAS  Google Scholar 

  • Nita, D., Cissé, Y., Timofeev, I., and Steriade, M., “Increased propensity to seizures after chronic cortical deafferentation in vivo,” J. Neurophysiol, 95, No. 2, 902–913 (2006).

    Article  Google Scholar 

  • Rose, C. R., Felix, L., Zeug, A., et al., “Astroglial glutamate signaling and uptake in the hippocampus,” Front. Mol. Neurosci., 10, 451 (2018).

    Article  Google Scholar 

  • Schipke, C. G. and Kettenmann, H., “Astrocyte responses to neuronal activity,” Glia, 47, No. 3, 226–232 (2004).

    Article  Google Scholar 

  • Verkhratsky, A. and Nedergaard, M., “Physiology of astroglia,” Physiol. Rev., 98, No. 1, 239–389 (2018).

    Article  CAS  Google Scholar 

  • Vinogradova, O. S., “Functional characteristics of nervous tissue (hippocampus and septum) transplanted into the anterior eye chamber and brain, Sov. Sci. Rev. F. Physiol. Gen. Biol., 2, 477–528 (1988).

  • Vinogradova, O. S., “Neuroscience at the end of the second millennium: a paradigm shift,” Zh. Vyssh. Nerv. Deyat., 50, No. 5, 743–774 (2000).

    CAS  Google Scholar 

  • Witcher, M. R., Kirov, S. A., and Harris, K. M., “Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus,” Glia, 55, 13–23 (2007).

    Article  Google Scholar 

  • Zhuravleva, Z. N., “The hippocampus and neural transplantation,” Zh. Vyssh. Nerv. Deyat., 54, No. 2, 149–162 (2004).

    CAS  Google Scholar 

  • Zhuravleva, Z. N., Bragin, A. G., and Vinogradova, O. S., “Organization of the nervous tissue (hippocampus and septum) developing in the anterior eye chamber. II. Neuronal perikarya and dendritic processes,” J. Hirnforsch., 26, No. 4, 417–437 (1985).

    Google Scholar 

  • Zhuravleva, Z. N., Bragin, A. G., and Vinogradova, O. S., “Organization of the nervous tissue (hippocampus and septum) developing in the anterior eye chamber. III. Axonal processes and their synaptic ending,” J. Hirnforsch., 27, No. 3, 323–341 (1986).

    CAS  PubMed  Google Scholar 

  • Zhuravleva, Z. N., Khutsyan, S. S., and Zhuravlev, G. I., “Ultrastructure of excitatory synaptic contacts in foci of epileptiform activity: experiments on intraocular neural transplants,” Zh. Vyssh. Nerv. Deyat., 66, No. 6, 742–750 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. N. Zhuravleva.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 3, pp. 375–382, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravleva, Z.N. Comparison of the Tripartite Organization of Synaptic Terminals in Intraocular Septal Transplants and in the Septal Area of the Brain. Neurosci Behav Physi 51, 59–64 (2021). https://doi.org/10.1007/s11055-020-01039-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-01039-1

Keywords

Navigation