Skip to main content
Log in

Formation of Neuronal and Neuroglial Populations during Pre- and Postnatal Development of the CNS in Vertebrates

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This article provides a brief review of concepts of the features of the pre- and postnatal development of the central nervous system in vertebrates. Particular attention is paid to questions of the origins of neuron populations at different periods of nervous system development. Neuron and glial populations are shown to arise from different sources: neural stem cells (NSC) give rise to the neurogenic epithelium by vertical migration in the brain wall, while closer to birth, their successors give rise to cells of the so-called radial glia (RG) and intermediate precursor cells (IPC). Replenishment of the neuron population in some parts of the brain occurs as a result of tangential migration of neuroblasts from the neurogenic zones located at great distances from the final site of neuron differentiation. The processes of neuro- and gliogenesis are affected by a large number of different growth, neurotrophic, and transcription factors. Questions of the features of postnatal neurogenesis in the adult nervous system in vertebrates and the potential of using model objects for studying this process in humans are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Gomazkov, Neurogenesis as an Adaptive Function of the Brain, Institute of Biomedical Chemistry Press, Moscow (2014).

    Book  Google Scholar 

  2. N. D. Eshchenko (ed.), F. E. Putilina, and O. V. Galkina, The Biochemistry of the Developmental Brain, St. Petersburg State University Press, St. Petersburg (2013).

    Google Scholar 

  3. D. E. Korzhevskii, E. S. Petrova, O. V. Kirik, et al., “Neural markers used in studies of stem cell differentiation,” Kletochn. Transplant. Tkan. Inzh., 5, No. 3, 57–63 (2010).

    Google Scholar 

  4. D. K. Obukhov, and E. V. Puschina, “Readial glia as a source of news in postnatal CNS development,” Mezhdunar. Zh. Eksperim. Obr., No. 6, 10–11,(2011).

    Google Scholar 

  5. D. K. Obukhov, E. V. Puschina, A. A. Varaksin, and M. E. Stukaneva, “Current concepts of the mechanisms of regulatio of process of preand postembryonic neurogenesis in the CNS in vertebrate animals and humans,” Vopr. Morfol. XXI Veka, No. 5, 68–81 (2018).

    Google Scholar 

  6. T. A. Tsehmistrenko, V. A. Vasil’eva, D. K. Obukhov, and N. S. Shumeiko, Structure and Development of the Cerebral Cortex, Sputnik+, Moscow (2019).

    Google Scholar 

  7. K. N. Yarygin and V. N. Yarygin, “Neurogenesis in the central nervous system and the potentials of regenerative neurology,” Zh. Nevrol. Psikhiatr., 112, No. 1, 4–13 (2012).

    Google Scholar 

  8. B. Carreira, C. Carvalho, and M. Araujos, “Regulation of injury-induced neurogenesis by NO,” Stem Cells Intern., Art. ID 895659 (2012), https://doi.org/10.1155/2012/895659.

  9. J. R. Conover and Q. Notti, “The neural stem cell niche,” Cell Tissue Res., 331, No. 1, 211–224 (2008).

    Article  PubMed  Google Scholar 

  10. D. H. Sanes, T. A. Ren, and W. A. Harris (eds.), Development of the Nervous system, Elsevier Academic Press (2006).

  11. C. T. Ekdahl, C. T. Kokaia, and L. L. Lindval, “Brain inflammation and adult neurogenesis: the dual role of microglia,” Neuroscience, 158, No. 3, 1021–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. I. Evsyukova, C. Plestant, and E. S. Anton, “Integrative mechanisms of oriented neuronal migration in the developing brain,” Annu. Rev. Cell Dev. Biol., 29, 299–353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. M. Farkas and W. B. Hutter, “The cell biology of neuronal stem and progenitor cells and its signifi cance for their proliferation versus differentiation during mammalian brain development,” Curr. Opin. Cell Biol., 20, No. 6, 707–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. S. A. Fietz and W. B. Huttner, “Cortical progenitor expansion, selfrenewal and neurogenesis – a polarized perspective,” Curr. Opin. Neurobiol., 21, No. 1, 23–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. S. Gil-Perotin, A. Alvarez-Buylla, and J. M. Garcia-Verdugo, “Identification and characterization of neural progenitor cells in the adult mammalian brain,” Adv. Anat. Embryol. Cell Biol., 203, 1–101 (2009).

    Article  PubMed  Google Scholar 

  16. H. Grandel and M. Brand, “Comparative aspects of adult neural stem cell activity in vertebrates,” Dev. Genes Evol., 223, No. 1–2, 131–147 (2013).

    Article  PubMed  Google Scholar 

  17. D. V. Hansen, P. R. Percer, A. R. Kriegstein, et al., “Neurogenic radialglia in the outer subventricular zone of human neocortex,” Nature, 464, 554–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. R. F. Hevner, “From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development,” Mol. Neurobiol., 33, No. 1, 33–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. I. Imayoshi and R. Kageyama, “The role of notch signaling in adult neurogenesis,” Mol. Neurobiol., 44, No. 1, 7–12 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. G. Kempermann, “Adult neurogenesis,” in: Neuroscience in the 21st Century, D. W. Pfaff (ed.), Springer, (2013), pp. 161–178.

  21. A. Kriegstein and A. Alvares-Buylla, “The glia nature of embryonic and adult neuronal stem cells,” Annu. Rev. Neurosci., 32, 149–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. W. Levison, J. de Vellis, and J. E. Goldman, “Astrocyte Development,” in: Developmental Neurobiology, M. S. Rao and M. Jacobson (eds.), Kluwer Academic Plenum Publishers, New York (2015), Chpt. 7, pp. 197–222.

  23. L. E. Mello and B. M. Longo, “Neurogenesis: A change of paradigms,” in: Perspectives of Stem Cells, H. Ulrich (eds.), Springer Science (2010), Chpt. 2, pp. 10–33.

  24. G. Ming and H. Song, “Adult neurogenesis in the mammalian brain: Significant answers and significant questions,” Neuron, 70, No. 4, 687–702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Y. Mu, S. W. Lee, and F. Gage, “Signaling in adult neurogenesis,” Curr. Opin. Neurobiol., 20, No. 4, 416–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Namihira and K. Nakashima, “Mechanisms of astrocytogenesis in the mammalian brain,” Curr. Opin. Neurobiol., 23, No. 6, 921–927 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. T. Seki, K. Sawamoto, J. M. Parent, and A. Alvarez-Buylla, Neurogenesis in the Adult Brain, Springer, (2011).

  28. Pellegrini E, K. Mouriec, I. Anglade, et al., “Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish,” J. Comp. Neurol., 501, No. 1, 150–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. L. Pinto and M. Götz, “Radial glial cell heterogeneity – The source of diverse progeny in the CNS,” Prog. Neurobiol., 83, No. 1, 2–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. E. V. Pushchina, A. A. Varaksin, and D. K. Obukhov, “Participation of neurochemical signaling in adult neurogenesis and differentiation,” in: Neurochemistry, T. Heinbocken (ed.), Intech Corp., USA (2014), Chapter 8, pp. 225–255.

  31. E. V. Puschina, A. A. Varaksin, S. Shukla, and D. K. Obukhov, The Neurochemical Organization and Adult Neurogenesis in the Masu Salmon Brain, Nova Science Publishers, New York (2017).

    Google Scholar 

  32. E. Tavema, Gёtz M, and W. B. Huttner, “The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex,” Annu. Rev. Cell Dev. Biol., 30, 465–502 (2014).

    Article  Google Scholar 

  33. H. J. Ten Donkelaar, M. Lammens, and A. Hori, Clinical Neuroembryology. Development and Developmental Disorders of the Human Central Nervous System, Springer (2006).

  34. M. V. Ugrumov, “Developing brain as an endocrine organ: a paradoxical reality,” Neurochem. Res., 35, No. 6, 837– 850 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. D. D. Wang and A. Bordey, “The astrocyte odyssey,” Prog. Neurobiol., 86, No. 4, 342–367 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. G. K. H. Zupanc and R. F. Sîrbulescu, “Teleost fish as a model system to study successful regeneration of the central nervous system,” Curr. Top. Microbiol. Immunol., 367, 193–233 (2013).

    CAS  PubMed  Google Scholar 

  37. G. Zupanc, K. Hinsch, and F. H. Gage, “Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain,” J. Comp. Neurol., 488, No. 3, 290–319 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Obukhov.

Additional information

Translated from Morfologiya, Vol. 156, No. 6, pp. 57–63, November–December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obukhov, D.K., Tsehmistrenko, T.A., Puschina, E.V. et al. Formation of Neuronal and Neuroglial Populations during Pre- and Postnatal Development of the CNS in Vertebrates. Neurosci Behav Physi 50, 810–815 (2020). https://doi.org/10.1007/s11055-020-00970-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00970-7

Keywords

Navigation