Skip to main content

Advertisement

Log in

The Developing Brain as a Target for Experimental Treatments in Modeling Pathological Processes

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review addresses approaches to modeling impairments to brain function assessed in adulthood by targeted treatments during the perinatal period. Models of neuromental disorders linked with impairments to the dynamics of brain development are considered, along with models of diseases characteristic of older people. Pharmacological actions on the developing brain have been shown to induce delayed behavioral changes opposite to those induced by the drugs used when given to adult animals (for example, the development of a depressive state after perinatal administration of antidepressants). The history of the creation of such experimental models and their potential pathophysiological mechanisms are discussed. The significance of scientific research of this type for practical healthcare is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Able, J. A., Gudelsky, G. A., Vorhees, C. V., and Williams, M. T., “3,4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory,” Biol. Psychiatry, 59, No. 12, 1219–1226 (2006), https://doi.org/10.1016/j.biopsych.2005.09.006.

    Article  CAS  PubMed  Google Scholar 

  2. Ainsworth, B., Marshall, J. E., Meron, D., et al., “Evaluating psychological interventions in a novel experimental human model of anxiety,” J. Psychiatr. Res., 63, 117–122 (2015), https://doi.org/10.1016/j.jpsychires.2015.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Al’bitskaya, Zh. V., Dvoryaninova, V. V., and Kasimova, L. N., “Comorbid pathology in autistic spectrum disorders in children,” Sib. Vestn. Psikhiatr. Narkol., 1, No. 90, 38–42 (2016).

    Google Scholar 

  4. Al-Mamari, W., Al-Saegh, A., Al-Kindy, A., et al., “Diagnostic yield of chromosomal microarray analysis in a cohort of patients with autism spectrum disorders from a highly consanguineous population,” J. Autism Dev. Disord., 45, No. 8, 2323–2328 (2015), https://doi.org/10.1007/s10803-015-2394-9.

    Article  PubMed  Google Scholar 

  5. Amos-Kroohs, R. M., Williams, M. T., Braun, et al., “Neurobehavioral phenotype of C57BL/6J mice prenatally and neonatally exposed to cigarette smoke,” Neurotoxicol. Teratol., 35, 34–45 (2013), https://doi.org/10.1016/j.ntt.2013.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andersen, S. L., Laurberg, P., Wu, C. S., and Olsen, J., “Attention deficit hyperactivity disorder and autism spectrum disorder in children born to mothers with thyroid dysfunction: a Danish nationwide cohort study,” BJOG, 121, No. 11, 1365–1374 (2014), https://doi.org/10.1111/1471-0528.12681.

    Article  CAS  PubMed  Google Scholar 

  7. Arad, M., Piontkewitz, Y., Albelda, N., et al., “Immune activation in lactating dams alters sucklings’ brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology,” Brain Behav. Immun., 63, 35–49 (2017), https://doi.org/10.1016/j.bbi.2017.01.015.

    Article  CAS  PubMed  Google Scholar 

  8. Atladóttir, H. Ó., Henriksen, T. B., Schendel, D. E., and Parner, E. T., “Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study,” Pediatrics, 130, No. 6, e1447-54 (2012), https://doi.org/10.1542/peds.2012-1107.

    Article  PubMed  Google Scholar 

  9. Babenko, O., Kovalchuk, I., and Metz, G. A., “Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health,” Neurosci. Biobehav. Rev., 48, 70–91 (2015), https://doi.org/10.1016/j.neubiorev.2014.11.013.

    Article  PubMed  Google Scholar 

  10. Bale, T. L., “Epigenetic and transgenerational reprogramming of brain development,” Nat. Rev. Neurosci., 16, No. 6, 332–344 (2015), https://doi.org/10.1038/nrn3818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belvederi Murri, M., Respino, M., Innamorati, M., et al., “Is good insight associated with depression among patients with schizophrenia? Systematic review and meta-analysis,” Schizophr. Res., 162, No. 1–3, 234–247 (2015), https://doi.org/10.1016/j.schres.2015.01.003.

    Article  PubMed  Google Scholar 

  12. Beyer, D. K. E. and Freund, N., “Animal models for bipolar disorder: from bedside to the cage,” Int. J. Bipolar Disord., 5, No. 1, 35 (2017), https://doi.org/10.1186/s40345-017-0104-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Binder, E. B., “The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders,” Psychoneuroendocrinology, 34, Suppl. 1, S186–195 (2009), https://doi.org/10.1016/j.psyneuen.2009.05.021.

    Article  CAS  PubMed  Google Scholar 

  14. Bjorklund, G., “The role of zinc and copper in autism spectrum disorders,” Acta Neurobiol. Exp. (Wars.), 73, No. 2, 225–236 (2013).

    Google Scholar 

  15. Blair, M. G., Nguyen, N. N., Albani, S. H., et al., “Developmental changes in structural and functional properties of hippocampal AMPARs parallels the emergence of deliberative spatial navigation in juvenile rats,” J. Neurosci., 33, No. 30, 12218–12228 (2013), https://doi.org/10.1523/JNEUROSCI.4827-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bliss, T. V., Chung, S. H., and Stirling, R. V., “Proceedings: Structural and functional development of the mossy fibre system in the hippocampus of the post-natal rat,” J. Physiol., 239, No. 2, 92P–94P (1974).

    CAS  PubMed  Google Scholar 

  17. Boukhris, T., Sheehy, O., Mottron, L., and Bérard, A., “Antidepressant use during pregnancy and the risk of autism spectrum disorder in children,” JAMA Pediatr., 170, No. 2, 117–124 (2016), https://doi.org/10.1001/jamapediatrics.2015.3356.

    Article  PubMed  Google Scholar 

  18. Boulle, F., Pawluski, J. L., Homberg, J. R., et al., “Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring,” Horm. Behav., 80, 47–57 (2016), https://doi.org/10.1016/j.yhbeh.2016.01.017.

    Article  CAS  PubMed  Google Scholar 

  19. Braun, T., Challis, J. R., Newnham, J. P., and Sloboda, D. M., “Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk,” Endocr. Rev., 34, No. 6, 885–916 (2013), https://doi.org/10.1210/er.2013-1012.

    Article  CAS  PubMed  Google Scholar 

  20. Brown, A. S., “The environment and susceptibility to schizophrenia,” Prog. Neurobiol., 93, No. 1, 23–58 (2011), https://doi.org/10.1016/j.pneurobio.2010.09.003.

    Article  CAS  PubMed  Google Scholar 

  21. Buschdorf, J. P. and Meaney, M. J., “Epigenetics/programming in the HPA axis,” Compr. Physiol., 6, No. 1, 87–110 (2015), https://doi.org/10.1002/cphy.c140027.

    Article  PubMed  Google Scholar 

  22. Butorin, G. G. and Ben’ko, L. A., “Neuropathy syndrome in the structure of childhood mental disorders,” Sibirsk. Psikhol. Zh., 60, 108–119 (2016).

    Google Scholar 

  23. Cassano, P., Hidalgo, A., Burgos, V., et al., “Hippocampal upregulation of the cyclooxygenase-2 gene following neonatal clomipramine treatment (a model of depression),” Pharmacogenomics J., 6, No. 6, 381–387 (2006), https://doi.org/10.1038/sj.tpj.6500385.

    Article  CAS  PubMed  Google Scholar 

  24. Charil, A., Laplante, D. P., Vaillancourt, C., and King, S., “Prenatal stress and brain development,” Brain Res. Rev., 65, No. 1, 56–79 (2010), https://doi.org/10.1016/j.brainresrev.2010.06.002.

    Article  PubMed  Google Scholar 

  25. Chen, Y. and Baram, T. Z., “Toward understanding how early-life stress reprograms cognitive and emotional brain networks,” Neuropsychopharmacology, 41, No. 1, 197–206 (2016), https://doi.org/10.1038/npp.2015.181.

    Article  PubMed  Google Scholar 

  26. Chong, S. C., Broekman, B. F., Qiu, et al., “Anxiety and depression during pregnancy and temperament in early infancy: findings from a multi-ethnic, Asian, prospective birth cohort study,” Infant Ment. Health J., 37, No. 5, 584–98 (2016), https://doi.org/10.1002/imhj. 21582.

    Article  PubMed  Google Scholar 

  27. Cohen, M. A., Skelton, M. R., Schaefer, T. L., et al., “Learning and memory after neonatal exposure to 3, 4-methylenedioxymethamphetamine (ecstasy) in rats: interaction with exposure in adulthood,” Synapse, 57, No. 3, 148–159 (2005), https://doi.org/10.1002/syn.20166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Costoloni, G., Pierantozzi, E., Goracci, A., et al., “Mood stabilizers and pregnancy outcomes – a review,” Psychiatr. Polska, 48, No. 5, 865–887 (2014).

    Article  Google Scholar 

  29. Crăciun, E. C., Bjørklund, G., Tinkov, A. A., et al., “Evaluation of whole blood zinc and copper levels in children with autism spectrum disorder,” Metab. Brain. Dis., 31, No. 4, 887–890 (2016), https://doi.org/10.1007/s11011-016-9823-0.

    Article  PubMed  CAS  Google Scholar 

  30. Curtin, P., Austin, C., Curtin, A., et al., “Dynamical features in fetal and postnatal zinc-copper metabolic cycles predict the emergence of autism spectrum disorder,” Sci. Adv., 4, No. 5, eaat1293 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Deltheil, T., Guiard, B. P., Cerdan, J., et al., “Behavioral and serotonergic consequences of decreasing or increasing hippocampus brain-derived neurotrophic factor protein levels in mice,” Neuropharmacology, 55, No. 6, 1006–1014 (2008), https://doi.org/10.1016/j.neuropharm.2008.08.001.

    Article  CAS  PubMed  Google Scholar 

  32. Deussing, J. M. and Jakovcevski, M., “Histone modifications in major depressive disorder and related rodent models,” Adv. Exp. Med. Biol., 978, 169–183 (2017), https://doi.org/10.1007/978-3-319-53889-1_9.

    Article  CAS  PubMed  Google Scholar 

  33. Dirven, B. C. J., Homberg, J. R., Kozicz, T., and Henckens, M. J. A. G., “Epigenetic programming of the neuroendocrine stress response by adult life stress,” J. Mol. Endocrinol., 59, No. 1, R11–R31 (2017), https://doi.org/10.1530/JME-17-0019.

    Article  CAS  PubMed  Google Scholar 

  34. Drago, F., Continella, G., Alloro, M. C., and Scapagnini, U., “Behavioral effects of perinatal administration of antidepressant drugs in the rat,” Neurobehav. Toxicol. Teratol., 7, No. 5, 493–497 (1985).

    CAS  PubMed  Google Scholar 

  35. Eriksson, J. G., “Epidemiology, genes and the environment: lessons learned from the Helsinki Birth Cohort Study,” J. Intern. Med., 261, No. 5, 418–425 (2007), https://doi.org/10.1111/j.1365-2796.2007.01798.x.

    Article  CAS  PubMed  Google Scholar 

  36. Fedorov, N. B., “Development of the reverse inhibition system in hippocampal fi eld CA1 in the early postnatal period,” Bull. Exp. Biol. Med., 110, No. 11, 451–452 (1990).

    CAS  Google Scholar 

  37. Fernández de Cossío, L., Guzmán, A., van der Veldt, S., and Luheshi, G. N., “Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring,” Brain Behav. Immun., 63, 88–98 (2017), https://doi.org/10.1016/j.bbi.2016.09.028.

    Article  PubMed  Google Scholar 

  38. Fowden, A. L. and Forhead, A. J., “Endocrine mechanisms of intrauterine programming,” Reproduction, 127, No. 5, 515–526 (2004), https://doi.org/10.1530/rep.1.00033.

    Article  CAS  PubMed  Google Scholar 

  39. Gale, C. R., O’Callaghan, F. J., Godfrey, K. M., et al., “Critical periods of brain growth and cognitive function in children,” Brain, 127, No. 2, 321–329 (2004), https://doi.org/10.1093/brain/awh034.

    Article  PubMed  Google Scholar 

  40. Gandy, K., Kim, S., Sharp, C., et al., “Pattern Separation: A potential marker of impaired hippocampal adult neurogenesis in major depressive disorder,” Front. Neurosci., 11, 571 (2017), eCollection 2017, https://doi.org//10.3389/fnins.2017.00571.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gaynullina, D. K., Sofronova, S. I., Selivanova, E. K., et al., “NO-mediated anticontractile effect of the endothelium is abolished in coronary arteries of adult rats with antenatal/early postnatal hypothyroidism,” Nitric Oxide, 63, 21–28 ( https://doi.org/10.1016/j.niox.2016.12.007.

  42. Gingrich, J. A., Malm, H., Ansorge, M. S., et al., “New insights into how serotonin selective reuptake inhibitors shape the developing brain,” Birth Defects Res., 109, No. 12, 924–932 (2017), https://doi.org/10.1002/bdr2.1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Glover, M. E. and Clinton, S. M., “Of rodents and humans: A comparative review of the neurobehavioral effects of early life SSRI exposure in preclinical and clinical research,” Int. J. Dev. Neurosci., 51, 50–72 (2016), https://doi.org/10.1016/j.ijdevneu.2016.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gluckman, P. D. and Hanson, M. A., “Developmental plasticity and human disease: research directions,” J. Intern. Med., 261, No. 5, 461–471 (2007), https://doi.org//10.1111/j.1365-2796.2007.01802.x.

    Article  CAS  PubMed  Google Scholar 

  45. Gogtay, N., Giedd, J. N., Lusk, L., et al., “Dynamic mapping of human cortical development during childhood through early adulthood,” Proc. Natl. Acad. Sci. USA, 101, No. 21, 8174–8179 (2004), https://doi.org/10.1073/pnas.0402680101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gotham, K., Unruh, K., and Lord, C., “Depression and its measurement in verbal adolescents and adults with Autism spectrum disorder,” Autism, 19, No. 4, 491–504 (2015), https://doi.org/10.1177/1362361314536625.

    Article  PubMed  Google Scholar 

  47. Grantham-McGregor, S. and Baker-Henningham, H., “Review of the evidence linking protein and energy to mental development,” Public Health Nutr., 8, No. 7A, 1191–1201 (2005).

    Article  PubMed  Google Scholar 

  48. Green, C. G., Babineau, V., Jolicoeur-Martineau, A., et al., Maternal Adversity, Vulnerability, and Neurodevelopment Research Team, “Prenatal maternal depression and child serotonin transporter linked polymorphic region (5-HTTLPR) and dopamine receptor D4 (DRD4) genotype predict negative emotionality from 3 to 36 months,” Dev. Psychopathol., 29, No. 3, 901–917 (2017), https://doi.org/10.1017/S0954579416000560.

  49. Grigor’yan, G. A. and Gulyaeva, N. V., “Stress reactivity and stress resistance in the pathogenesis of depressive disorders: the role of epigenetic mechanisms,” Zh. Vyssh. Nerv. Deyat., 65, No. 1, 19–32 (2015), https://doi.org/10.7868/S0044467715010037.

    Google Scholar 

  50. Gudasheva, T. A., Tarasyuk, A. V., Povarnina, P. Yu., and Seredenin, S. B., “Brain-derived neurotrophic factor and its low molecular weight mimetics,” Farmakokin. Farmakodin., 3, 3–13 (2017).

    Google Scholar 

  51. Hadjkacem, I., Ayadi, H., Turki, M., et al., “Prenatal, perinatal and postnatal factors associated with autism spectrum disorder,” J. Pediatr. (Rio J.), 92, No. 6, 595–601 (2016), https://doi.org/10.1016/j.jped.2016.01.012.

    Article  Google Scholar 

  52. Hansen, H. H., Sánchez, C., and Meier, E., “Neonatal administration of the selective serotonin reuptake inhibitor Lu 10-134-C increases forced swimming-induced immobility in adult rats: a putative animal model of depression?” J. Pharmacol. Exp. Ther., 283, No. 3, 1333–1341 (1997).

    CAS  PubMed  Google Scholar 

  53. Harris, J. C., “New classification for neurodevelopmental disorders in DSM-5,” Curr. Opin. Psychiatry, 27, No. 2, 95–97 (2014), https://doi.org/10.1097/YCO.0000000000000042.

    Article  PubMed  Google Scholar 

  54. Harvey, L. and Boksa, P., “Prenatal and postnatal animal models of immune activation: relevance to a range of neurodevelopmental disorders,” Dev. Neurobiol., 72, No. 10, 1335–1348 (2012), https://doi.org/10.1002/dneu.22043.

    Article  CAS  PubMed  Google Scholar 

  55. Haskey, C. and Galbally, M., “Mood stabilizers in pregnancy and child developmental outcomes: A systematic review,” Aust. N. Z. J. Psychiatry, 51, No. 11, 1087–1097 (2017), https://doi.org/10.1177/0004867417726175.

    Article  PubMed  Google Scholar 

  56. Ikegame, T., Bundo, M., Murata, Y., et al., “DNA methylation of the BDNF gene and its relevance to psychiatric disorders,” J Hum. Genet., 58, No. 7, 434–438 (2013), https://doi.org/10.1038/jhg.2013.65.

    Article  CAS  PubMed  Google Scholar 

  57. Ismail, F. Y., Fatemi, A., and Johnston, M. V., “Cerebral plasticity: Windows of opportunity in the developing brain,” Eur. J. Paediatr. Neurology, 21, No. 1, 23–48 (2017), https://doi.org/10.1016/j.ejpn.2016.07.007.

    Article  Google Scholar 

  58. Ivanitskaya, L. N., Lednova, M. I., Pustovaya, O. V., and Khatlamadzhiyan, V. R., “Early childhood autism syndrome: review of the literature,” Valeologiya, 3, 116–127 (2015).

    Google Scholar 

  59. Jarde, A., Morais, M., Kingston, D., et al., “Neonatal outcomes in women with untreated antenatal depression compared with women without depression: A systematic review and meta-analysis,” JAMA Psychiatry, 73, No. 8, 826–837 (2016), https://doi.org/10.1001/jamapsychiatry.2016.0934.

    Article  PubMed  Google Scholar 

  60. Jha, S. C., Meltzer-Brody, S., Steiner, R. J., et al., “Antenatal depression, treatment with selective serotonin reuptake inhibitors, and neonatal brain structure: A propensity-matched cohort study,” Psychiatry Res. Neuroimaging, 253, 43–53 (2016), https://doi.org//10.1016/j.pscychresns.2016.05.004.

    Article  PubMed  Google Scholar 

  61. Kanungo, S., Soares, N., He, M., and Steiner, R. D., “Sterol metabolism disorders and neurodevelopment - an update,” Dev. Disabil. Res. Rev., 17, No. 3, 197–210 (2013), https://doi.org/10.1002/ddrr.1114.

    Article  PubMed  Google Scholar 

  62. Kapitsa, I. G., Ivanova, E. A., Voronina, T. A., and Kalinina, A. P., “Effects of tryptophan on the behavior of young adult rats in fetal valproate syndrome,” Patogenez, 16, No. 2, 56–63 (2018).

    Google Scholar 

  63. Kapitsa, I. G., Ivanova, E. A., Voronina, T. A., and Protsun, G. V., “Effects of tryptazine on the manifestations of autistic spectrum disorder in rats with fetal valproate syndrome,” Farmakokin. Farmakodin., 3, 34–38 (2017).

    Google Scholar 

  64. Karam, S. M., Barro, A. J., Matijasevich, A., et al., “Intellectual disability in a birth cohort: Prevalence, etiology, and determinants at the age of 4 years,” Public Health Genomics, 19, No. 5, 290–297 (2016), https://doi.org/10.1159/000448912.

    Article  PubMed  Google Scholar 

  65. Karam, S. M., Riegel, M., Segal, S. L., et al., “Genetic causes of intellectual disability in a birth cohort: a population-based study,” Am. J. Med. Genet. A., 167, No. 6, 1204–1214 (2015), https://doi.org/10.1002/ajmg.a.37011.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kazin, E. M., Blinova, N. G., and Litvinova, N. A., Bases for Individual Health in Humans: Introduction to General and Applied Valeology, Vlados, Moscow (2000).

    Google Scholar 

  67. Kel’manson, I., “Maternal smoking during pregnancy as a risk factor for the development of the fetus and child,” Vrach, 8, 2–6 (2017).

    Google Scholar 

  68. Khudina, Yu. S., and Dmitriev, M. N., “The comorbidity of signs of attention deficit hyperactivity disorder and bipolar affective disorder in young people,” Arkhivarius, 1, No. 16, 33–37 (2017).

    Google Scholar 

  69. Kim, K. C., Gonzales, E. L., Lázaro, M. T., et al., “Clinical and neurobiological relevance of current animal models of autism spectrum disorders,” Biomol. Ther. (Seoul), 24, No. 3, 207–243 (2016), https://doi.org/10.4062/biomolther.2016.061.

    Article  CAS  Google Scholar 

  70. Klyushnik, T. P., Androsova, L. V., Simashkova, N. V., et al., “The state of congenital and acquired immunity in children with psychotic forms of autistic spectrum disorder,” Zh. Nevrol. Psikhiat., 111, No. 8, 41–4 (2011).

    Google Scholar 

  71. Klyushnik, T. P., Androsova, L. V., Simashkova, N. V., et al., “State of the immune system in the continuum of autistic spectrum disorder and schizophrenia spectrum disorder,” Vestn. Sov. Molod. Uchen. Spets. Chelyabinsk. Obl., 3, No. 2 (13), 62–66 (2016).

    Google Scholar 

  72. Kotov, A. S., “Anxiety in patients with epilepsy,” Zh. Nevrol. Psikhiat., 113, No. 4–2, 41–44 (2013).

    CAS  Google Scholar 

  73. Krupina, N. A., Khlebnikova, N. N., and Orlova, I. N., “Affectivemotivational disorders in rats as the sequelae of the action of diprotin A and sitagliptin in the first week of postnatal development,” Zh. Vyssh. Nerv. Deyat., 66, No. 3, 367–381 (2016), https://doi.org/10.7868/S0044467716030059.

    CAS  Google Scholar 

  74. Kryuchkova, N. A., “Functional maturation of hippocampal mossy fiber synapses in in ontogeny in rabbits,” Neirofi ziologiya, 12, No. 3, 246–253 (1980).

    Google Scholar 

  75. Kryuchkova, N. A., “Short-term and long-term potentiation in afferent hippocampal pathways in neonatal rabbits,” Neirofi ziologiya, 15, No. 2, 161–169 (1983).

    Google Scholar 

  76. Kryzhanovskii, G. N., Dysregulatory Pathology, Meditsina, Moscow (2002).

    Google Scholar 

  77. Kucerova, J., Babinska, Z., Horska, K., and Kotolova, H., “The common pathophysiology underlying the metabolic syndrome, schizophrenia and depression. A review,” Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub., 159, No. 2, 208–214 (2015), https://10.5507/bp.2014.060.

    Article  PubMed  Google Scholar 

  78. Kudryavtseva, N. N., Shurlygina, A. V., Galyamina, A. G., et al., “Immunopathology of mixed anxiety/depressive disorder: an experimental approach to studies of immunodeficient states (review),” Zh. Vyssh. Nerv. Deyat., 67, No. 6, 671–692 (2017), https://doi.org/10.7868/S0044467717060016.

    Google Scholar 

  79. Kumar, V., Bhat, Z. A., and Kumar, D., “Animal models of anxiety: a comprehensive review,” J. Pharmacol. Toxicol. Meth., 68, No. 2, 175–183 (2013), https://doi.org//10.1016/j.vascn.2013.05.003.

    Article  CAS  Google Scholar 

  80. Kundakovic, M., Gudsnuk, K., Herbstman, J. B., et al., “DNA methylation of BDNF as a biomarker of early-life adversity,” Proc. Natl. Acad. Sci. USA, 112, No. 22, 6807–6813 (2015), https://doi.org/10.1073/pnas.1408355111.

    Article  CAS  PubMed  Google Scholar 

  81. Küpers, L. K., Xu, X., Jankipersadsing, S. A., et al., “DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring,” Int. J. Epidemiol., 44, No. 4, 1224–1237 (2015), https://doi.org/10.1093/ije/dyv048.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Latanov, A. V., Korshunov, V. A., Maiorov, V. I., and Serkov, A. N., “Serotonin and dopamine in biological models of depression,” Zh. Vyssh. Nerv. Deyat., 68, No. 4, 415–428 (2018), https://doi.org/10.1134/S0044467718040081.

    Google Scholar 

  83. Lebel, C., Walton, M., Letourneau, N., et al., “Prepartum and postpartum maternal depressive symptoms are related to children’s brain structure in preschool,” Biol. Psychiatry, 80, No. 11, 859–868 (2016), https://doi.org/10.1016/j.biopsych.2015.12.004.

    Article  PubMed  Google Scholar 

  84. Leblanc, M. O. and Bland, B. H., “Developmental aspects of hippocampal electrical activity and motor behavior in the rat,” Exp. Neurol., 66, No. 2, 220–237 (1979).

    Article  CAS  PubMed  Google Scholar 

  85. Lillycrop, K. A., Costello, P. M., Teh, A. L., et al., Epigen Global Research Consortium, and Godfrey, K. M., “Association between perinatal methylation of the neuronal differentiation regulator HES1 and later childhood neurocognitive function and behaviour,” Int. J. Epidemiol., 44, No. 4, 1263–1276 (2015), https://doi.org/10.1093/ije/dyv052.

  86. Lovic, V., Belay, H., Walker, C. D., et al., “Early postnatal experience and DRD2 genotype affect dopamine receptor expression in the rat ventral striatum,” Behav. Brain Res., 237, 278–82 (2013), https://doi.org//10.1016/j.bbr.2012.09.046.

    Article  CAS  PubMed  Google Scholar 

  87. Malinovskaya, N. A., Morgun, A. V., Lopatina, O. L., et al., “Stress in the early period of life: sequelae for brain development,” Zh. Vyssh. Nerv. Deyat., 66, No. 6, 643–668 (2016), https://doi.org/10.7868/S0044467716050051.

    Google Scholar 

  88. Malyshev, A. V., Abbasova, K. R., Averina, O. A., et al., “An experimental model of autistic disorder: induced fetal valproate syndrome,” Vestn. Mosk. Univ. Ser, 16 Biol., 3, 8–12 (2015).

    Google Scholar 

  89. McCann, U. D., Eligulashvili, V., and Ricaurte G. A., “(+/–)3, 4-Methylenedioxymethamphetamine (‘Ecstasy’)-induced serotonin neurotoxicity: clinical studies,” Neuropsychobiology, 42, No. 1, 11–16 (2000), https://doi.org/10.1159/000026665.

    Article  CAS  PubMed  Google Scholar 

  90. McHail, D. G. and Dumas, T. C., “Multiple forms of metaplasticity at a single hippocampal synapse during late postnatal development,” Dev. Cogn. Neurosci., 12, 145–154 (2015), https://doi.org/10.1016/j.dcn.2015.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Meehan, C., Harms, L., Frost, J. D., et al., “Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring,” Brain Behav. Immun., 63, 8–20 (2017), https://doi.org/10.1016/j.bbi.2016.07.144.

    Article  CAS  PubMed  Google Scholar 

  92. Meinzer, M. C., Pettit, J. W., and Viswesvaran, C., “The co-occurrence of attention-deficit/hyperactivity disorder and unipolar depression in children and adolescents: a meta-analytic review,” Clin. Psychol. Rev., 34, No. 8, 595–607 (2014), https://doi.org/10.1016/j.cpr.2014.10.002.

    Article  PubMed  Google Scholar 

  93. Meyer, U. and Feldon, J., “To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models,” Neuropharmacology, 62, No. 3, 1308–1321 (2012), https://doi.org/10.1016/j.neuropharm.2011.01.009.

    Article  CAS  PubMed  Google Scholar 

  94. Mezzacappa, A., Lasica, P. A., Gianfagna, F., et al., “Risk for autism spectrum disorders according to period of prenatal antidepressant exposure: A systematic review and meta-analysis,” JAMA Pediatr., 171, No. 6, 555–563 (2017), https://doi.org/10.1001/jamapediatrics.2017.0124.

    Article  PubMed  Google Scholar 

  95. Miller, B. R. and Hen, R., “The current state of the neurogenic theory of depression and anxiety,” Curr. Opin. Neurobiol., 30, 51–58 (2015), https://doi.org/10.1016/j.conb.2014.08.012.

    Article  CAS  PubMed  Google Scholar 

  96. Missault, S., Van den Eynde, K., Vanden Berghe, W., et al., “The risk for behavioural deficits is determined by the maternal immune response to prenatal immune challenge in a neurodevelopmental model,” Brain Behav. Immun., 42, 138–146 (2014), https://doi.org/10.1016/j.bbi.2014.06.013.

    Article  CAS  PubMed  Google Scholar 

  97. Moisiadis, V. G. and Matthews, S. G., “Glucocorticoids and fetal programming part 1: Outcomes,” Nat. Rev. Endocrinol., 10, No. 7, 391–402 (2014), https://doi.org/10.1038/nrendo.2014.73.

    Article  CAS  PubMed  Google Scholar 

  98. Moisiadis, V. G. and Matthews, S. G., “Glucocorticoids and fetal programming part 2: Mechanisms,” Nat. Rev. Endocrinology, 10, No. 7, 403–411 (2014), https://doi.org/10.1038/nrendo.2014.74.

    Article  CAS  PubMed  Google Scholar 

  99. Moog, N. K., Entringer, S., Heim C, et al., “Influence of maternal thyroid hormones during gestation on fetal brain development,” Neuroscience, 342, 68–100 (2017), https://doi.org/10.1016/j.neuroscience.2015.09.070.

    Article  CAS  PubMed  Google Scholar 

  100. Morozov, S. G., Gribova, I. E., Klyushnik, T. P., et al., “Effects of elevated levels of antibody to myelin basic protein in female mice on postnatal development and behavioral reactions in their offspring,” Bull. Exp. Biol. Med., 144, No. 10, 432–436 (2007).

    Google Scholar 

  101. Morozov, S. G., Sidyakin, A. A., Anikina, O. M., et al., “Effects of antibodies to nerve growth factor and myelin basic protein in female mice on the postnatal development of their offspring,” Patogenez, 9, No. 1, 27–29 (2011).

    Google Scholar 

  102. Mulligan, A., Anney, R., Butler, L., et al., “Home environment: association with hyperactivity/impulsivity in children with ADHD and their non-ADHD siblings,” Child Care Health Dev., 39, No. 2, 202–212 (2013), https://doi.org/10.1111/j.1365-2214.2011.01345.x.

    Article  CAS  PubMed  Google Scholar 

  103. Myl’nikova, A. N., Kolesov, D. V., Moskovtsev, A. A., et al., “Cellular microfluidic technologies for biomodeling of pathology,” Patogenez, 15, No. 4, 4–12 (2017), https://doi.org/10.25557/GM.2018.4.9743.

    Google Scholar 

  104. Namazova-Baranova, L. S., Kuchma, V. R., Il’in, A. G., et al., “Morbidity among children aged 5–10 years in the Russian Federation,” Meditsinsk. Sov., 1, 6–10 (2014).

    Google Scholar 

  105. Nestler, E. J., Peña, C. J., Kundakovic, M., et al., “Epigenetic basis of mental illness,” Neuroscientist, 22, No. 5, 447–463 (2016), https://doi.org/10.1177/1073858415608147.

    Article  CAS  PubMed  Google Scholar 

  106. Oberlander, T. F., “Fetal serotonin signaling: setting pathways for early childhood development and behavior,” J. Adolesc. Health, 51, No. 2 Suppl, S9–16 (2012), https://doi.org/10.1016/j.jadohealth.2012.04.009.

    Article  PubMed  Google Scholar 

  107. O’Donnell, K., O’Connor, T. G., and Glover, V., “Prenatal stress and neurodevelopment of the child: focus on the HPA axis and role of the placenta,” Dev. Neurosci, 31, No. 4, 285–292 (2009), https://doi.org/10.1159/000216539.

    Article  PubMed  CAS  Google Scholar 

  108. Onishchenko, N., Karpova, N., Sabri, F., et al., “Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury,” J. Neurochem., 106, No. 3, 1378–1387 (2008), https://doi.org/10.1111/j.1471-4159.2008.05484.x.

    Article  CAS  PubMed  Google Scholar 

  109. Ornoy, A., Weinstein-Fudim, L., and Ergaz, Z., “Antidepressants, antipsychotics, and mood stabilizers in pregnancy: What do we know and how should we treat pregnant women with depression,” Birth Defects Res., 109, No. 12, 933–956 (2017), https://doi.org/10.1002/bdr2.1079.

    Article  CAS  PubMed  Google Scholar 

  110. Ozawa, K., Hashimoto, K., Kishimoto, T., et al., “Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia,” Biol. Psychiatry, 59, No. 6, 546–554 (2006), https://doi.org/10.1016/j.biopsych.2005.07.031.

    Article  CAS  PubMed  Google Scholar 

  111. Parikshak, N. N., Gandal, M. J., and Geschwind, D. H., “Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders,” Nat. Rev. Genet., 16, No. 8, 441–458 (2015), https://doi.org/10.1038/nrg3934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Patterson, P. H., “Immune involvement in schizophrenia and autism: etiology, pathology and animal models,” Behav. Brain Res., 204, No. 2, 313–321 (2009), https://doi.org/10.1016/j.bbr.2008.12.016.

    Article  CAS  PubMed  Google Scholar 

  113. Paus, T., Keshavan, M., and Giedd, J. N., “Why do many psychiatric disorders emerge during adolescence?” Nat. Rev. Neurosci., 9, No. 12, 947–957 (2008), https://doi.org/10.1038/nrn2513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pješčić, K. D., Nenadović, M. M., Jašović-Gašić, M., et al., “Influence of psycho-social factors on the emergence of depression and suicidal risk in patients with schizophrenia,” Psychiatr. Danub., 26, No. 3, 226–230 (2014).

    PubMed  Google Scholar 

  115. Qiu, A., Anh, T. T., Li, Y., et al., “Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants,” Transl. Psychiatry, 5, e508 (2015), https://doi.org/10.1038/tp.2015.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Qiu, A., Tuan, T. A., Ong, M. L., et al., “COMT haplotypes modulate associations of antenatal maternal anxiety and neonatal cortical morphology,” Am. J. Psychiatry, 172, No. 2, 163–172 (2015), https://doi.org/10.1176/appi.ajp.2014.14030313.

    Article  PubMed  Google Scholar 

  117. Reisinger, S. N., Kong, E., Khan, D., et al., “Maternal immune activation epigenetically regulates hippocampal serotonin transporter levels,” Neurobiol. Stress, 4, 34–43 (2016); eCollection 2016 Oct.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Reynolds, R. M., “Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis-2012 Curt Richter Award Winner,” Psychoneuroendocrinology, 38, No. 1, 1–11 (2013), https://doi.org/10.1016/j.psyneuen.2012.08.012.

    Article  CAS  PubMed  Google Scholar 

  119. Rice, D. and Barone, S., Jr., “Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models,” Environ. Health Perspect., 108, Supplement 3, 511–533 (2000).

    PubMed  PubMed Central  Google Scholar 

  120. Richetto, J., Massart, R., Weber-Stadlbauer, U., et al., “Genome-wide DNA methylation changes in a mouse model of infection-mediated neurodevelopmental disorders,” Biol. Psychiatry, 81, No. 3, 265–276 (2017), https://doi.org/10.1016/j.biopsych.2016.08.010.

    Article  CAS  PubMed  Google Scholar 

  121. Ricq, E. L., Hooker, J. M., and Haggarty, S. J., “Toward development of epigenetic drugs for central nervous system disorders: Modulating neuroplasticity via H3K4 methylation,” Psychiatry Clin. Neurosci., 70, No. 12, 536–550 (2016), https://doi.org/10.1111/pcn.12426.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Rider, F. K., Danilenko, O. A., Grishkina, M. N., et al., “Depression and epilepsy: comorbidity, pathogenetic similarity, principles, therapy,” Zh. Nevrol. Psikhiat., 116, No. 9–2, 19–24 (2016).

    Article  CAS  Google Scholar 

  123. Rifkin-Graboi, A., Bai, J., Chen, H., et al., “Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth,” Biol. Psychiatry, 74, No. 11, 837–844 (2013), https://doi.org/10.1016/j.biopsych.2013.06.019.

    Article  PubMed  Google Scholar 

  124. Rodionov, A. N., Lobanov, A. V., Morozov, S. G., et al., “Effects of high levels of anti-NGF antibodies in early embryogenesis on the formation of behavior in mice during the postnatal period of development,” Patolog. Fiziol. Éksperim. Ter., 56, No. 3, 68–74 (2012).

    Google Scholar 

  125. Ronovsky, M., Berger, S., Molz, B., et al., “Animal models of maternal immune activation in depression research,” Curr. Neuropharmacol., 14, No. 7, 688–704 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ronovsky, M., Berger, S., Zambon, A., et al., “Maternal immune activation transgenerationally modulates maternal care and offspring depression-like behavior,” Brain Behav. Immun., 63, 127–136 (2017), https://doi.org/10.1016/j.bbi.2016.10.016.

    Article  CAS  PubMed  Google Scholar 

  127. Rotem-Kohavi, N. and Oberlander, T. F., “Variations in neurodevelopmental outcomes in children with prenatal SSRI antidepressant exposure,” Birth Defects Res., 109, No. 12, 909–923 (2017), https://doi.org/10.1002/bdr2.1076.

    Article  CAS  PubMed  Google Scholar 

  128. Rybakowski, J. K., “Genetic influences on response to mood stabilizers in bipolar disorder: current status of knowledge,” CNS Drugs, 27, No. 3, 165–73 (2013), https://doi.org/10.1007/s40263-013-0040-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Saez, M., Barceló, M. A., Farrerons, M., and López-Casasnovas, G., “The association between exposure to environmental factors and the occurrence of attention-deficit/hyperactivity disorder (ADHD). A population-based retrospective cohort study,” Environ. Res., 166, 205–214 (2018), https://doi.org/10.1016/j.envres.2018.05.009.

    Article  CAS  PubMed  Google Scholar 

  130. Sandman, C. A., Davis, E. P., Buss, C., and Glynn, L. M., “Exposure to prenatal psychobiological stress exerts programming influences on the mother and her fetus,” Neuroendocrinology, 95, No. 1, 7–21 (2012), https://doi.org/10.1159/000327017.

    Article  PubMed  CAS  Google Scholar 

  131. Santos, S. O., Loureiro, S. M., Alves, I. G., et al., “Experimental gestational hypothyroidism evokes hypertension in adult offspring rats,” Auton. Neurosci., 170, No. 1–2, 36–41 (2012), https://doi.org/10.1016/j.autneu.2012.07.004.

    Article  CAS  PubMed  Google Scholar 

  132. Schouw, M. L., Gevers, S., Caan, M. W., et al., “Mapping serotonergic dysfunction in MDMA (ecstasy) users using pharmacological MRI,” Eur. Neuropsychopharmacol., 22, No. 8, 537–545 (2012), https://doi.org/10.1016/j.euroneuro.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  133. Semenova, T. P., “Developmental characteristics of adaptive behavior in hippocampectomized rats,” in: Mechanisms of Adaptive Behavior, Leningrad (1986), pp. 54–57.

  134. Shavlovskaya, O. A. and Kuznetsov, S. L., “Correction of anxiety disorders: focus on the comorbid patient,” Ter. Arkhiv, 90, No. 4, 67–71 (2018).

    CAS  Google Scholar 

  135. Singal, D., Brownell, M., Chateau, D., et al., “Neonatal and childhood neurodevelopmental, health and educational outcomes of children exposed to antidepressants and maternal depression during pregnancy: protocol for a retrospective population-based cohort study using linked administrative data,” BMJ Open, 6, No. 11, e013293 (2016), https://doi.org/10.1136/bmjopen-2016-013293.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Skelton, M. R., Graham, D. L., Schaefer, T. L., et al., “Distinct periods of developmental sensitivity to the effects of 3, 4-(±)-methylenedioxymethamphetamine (MDMA) on behaviour and monoamines in rats,” Int. J. Neuropsychopharmacol., 15, No. 6, 811–824 (2012), https://doi.org/10.1017/S1461145711000952.

    Article  CAS  PubMed  Google Scholar 

  137. Skelton, M. R., Williams, M. T., and Vorhees, C. V., “Developmental effects of 3, 4-methylenedioxymethamphetamine: a review,” Behav. Pharmacol., 19, No. 2, 91–111 (2008), https://doi.org/10.1097/FBP.0b013e3282f62c76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Smulevich, A. B., Briko, N. I., Andryushchenko, A. V., et al., “Comorbidity of depression and nonaffective schizophrenia spectrum disorders: the EDIP clinical-epidemiological study” Zh. Nevrol. Psikhiat., 115, No. 11, part 2, 6–19 (2015).

  139. Son’kin, V. D., “100 years of developmental physiology,” Nov. Issled., 1, No. 4, 24–35 (2003).

    Google Scholar 

  140. Sprowles, J. L. N., Hufgard, J. R., Gutierrez, A., et al., “Differential effects of perinatal exposure to antidepressants on learning and memory, acoustic startle, anxiety, and open-fi eld activity in Sprague–Dawley rats,” Int. J. Dev. Neurosci., 61, 92–111 (2017), https://doi.org/10.1016/j.ijdevneu.2017.06.004.

    Article  CAS  PubMed  Google Scholar 

  141. Sprowles, J. L., Hufgard, J. R., Gutierrez, A., et al., “Perinatal exposure to the selective serotonin reuptake inhibitor citalopram alters spatial learning and memory, anxiety, depression, and startle in Sprague–Dawley rats,” Int. J. Dev. Neurosci., 54, 39–52 (2016), https://doi.org/10.1016/j.ijdevneu.2016.08.007.

    Article  CAS  PubMed  Google Scholar 

  142. Steer, S., Pickrell, W. O., Kerr, M. P., and Thomas, R. H., “Epilepsy prevalence and socioeconomic deprivation in England,” Epilepsia, 55, No. 10, 1634–1641 (2014), https://doi.org/10.1111/epi.12763.

    Article  PubMed  Google Scholar 

  143. Stiles, J. and Jernigan, T. L., “The basics of brain development,” Neuropsychol. Rev., 20, No. 4, 327–348 (2010), https://doi.org/10.1007/s11065-010-9148-4.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Suri, D., Teixeira, C. M., Cagliostro, M. K., et al., “Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors,” Neuropsychopharmacology, 40, No. 1, 88–112 (2015), https://doi.org/10.1038/npp.2014.231.

    Article  PubMed  Google Scholar 

  145. Surin, A. M., Khiroug, S., Gorbacheva, L. R., et al., “Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures,” Front. Mol. Neurosci., 5, 102 (2013), https://doi.org/10.3389/fnmol.2012.00102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Swann, J. W., Brady, R. J., and Martin, D. L., “Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus,” Neuroscience, 28, No. 3, 551–561 (1989).

    Article  CAS  PubMed  Google Scholar 

  147. Talge, N. M., Neal, C., Glover V; Early Stress, Translational Research and Prevention Science Network: Fetal and Neonatal Experience on Child and Adolescent Mental Health, “Antenatal maternal stress and long-term effects on child neurodevelopment: how and why?” J. Child Psychol. Psychiatry, 48, No. 3–4, 245–261 (2007), https://doi.org/10.1111/j.1469-7610.2006.01714.x.

    Article  PubMed  Google Scholar 

  148. Tamnes, C. K., Herting, M. M., Goddings, A. L., et al., “Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness,” J. Neurosci., 37, No. 12, 3402–3412 (2017), https://doi.org/10.1523/JNEUROSCI.3302-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tau, G. Z. and Peterson, B. S., “Normal development of brain circuits,” Neuropsychopharmacology, 35, No. 1, 147–168 (2010), https://doi.org/10.1038/npp.2009.115.

    Article  PubMed  Google Scholar 

  150. Tran, N. Q. V. and Miyake, K., “Neurodevelopmental disorders and environmental toxicants: Epigenetics as an underlying mechanism,” Int. J. Genomics, 2017, 7526592 (2017), https://doi.org/10.1155/2017/7526592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Trekova, H. A., Maizelis, M. Ya., and Kogan, R. D., “Changes in the state of the blood:brain barrier in experimental neurosensitization,” Zh. Nevrol. Psikhiat., 79, No. 7, 872–875 (1979).

    CAS  Google Scholar 

  152. Van den Bergh, B. R. H., van den Heuvel, M. I., Lahti, M., et al., “Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy,” Neurosci. Biobehav. Rev., pii: S0149-7634(16)30734-5 (2017), https://doi.org/10.1016/j.neubiorev.2017.07.003.

  153. Varadinova, M. and Boyadjieva, N., “Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders,” Pharmacol. Res., 102, 71–80 (2015), https://doi.org/10.1016/j.phrs.2015.09.011.

    Article  CAS  PubMed  Google Scholar 

  154. Velazquez-Moctezuma, J. and Diaz Ruiz, O., “Neonatal treatment with clomipramine increased immobility in the forced swim test: an attribute of animal models of depression,” Pharmacol. Biochem. Behav., 42, No. 4, 737–739 (1992).

    Article  CAS  PubMed  Google Scholar 

  155. Vizel’, T. G., “Autism and vaccines: who is right?” Vestn. Ugroved., 2, No. 12, 148–160 (2013).

    Google Scholar 

  156. Vogel, G. and Hagler, M., “Effects of neonatally administered iprindole on adult behaviors of rats,” Pharmacol. Biochem. Behav., 55, No. 1, 157–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Vogel, G., Hartley, P., Neill, D., et al., “Animal depression model by neonatal clomipramine: reduction of shock induced aggression,” Pharmacol. Biochem. Behav., 31, No. 1, 103–106 (1988).

    Article  CAS  PubMed  Google Scholar 

  158. Vogel, G., Neill, D., Hagler, M., and Kors, D., “A new animal model of endogenous depression: a summary of present findings,” Neurosci. Biobehav. Rev., 14, No. 1, 85–91 (1990).

    Article  CAS  PubMed  Google Scholar 

  159. Volk, L., Kim, C. H., Takamiya, K., et al., “Developmental regulation of protein interacting with C kinase 1 (PICK1) function in hippocampal synaptic plasticity and learning,” Proc. Natl. Acad. Sci. USA, 107, No. 50, 21784–21789 (2010), https://doi.org/10.1073/pnas.1016103107.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Vorhees, C. V., Graham, D. L., Braun, A. A., et al., “Prenatal immune challenge in rats: effects of polyinosinic-polycytidylic acid on spatial learning, prepulse inhibition, conditioned fear, and responses to MK-801 and amphetamine,” Neurotoxicol. Teratol., 47, 54–65 (2015), https://doi.org/10.1016/j.ntt.2014.10.007.

    Article  CAS  PubMed  Google Scholar 

  161. Voronin, L. G., Zubova, O. B., and Buduk-ool, L. K., “Dynamics of the establishment of brain bioelectrical activity in rats during ontogeny,” Nauchn. Dok. Vyssh. Shkol. Biol. Nauki, 6, 44–48 (1982).

    Google Scholar 

  162. Wang, C., Shen, M., Guillaume, B., et al., “FKBP5 moderates the association between antenatal maternal depressive symptoms and neonatal brain morphology,” Neuropsychopharmacology, 43, No. 3, 564–570 (2018), https://doi.org/10.1038/npp.2017.232.

    Article  CAS  PubMed  Google Scholar 

  163. Weber-Stadlbauer, U., “Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders,” Transl. Psychiatry, 7, No. 5, e1113 (2017), https://doi.org/10.1038/tp.2017.78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Weber-Stadlbauer, U., Richetto, J., Labouesse, M. A., et al., “Transgenerational transmission and modification of pathological traits induced by prenatal immune activation,” Mol. Psychiatry, 22, No. 1, 102–112 (2017), https://doi.org/10.1038/mp.2016.41.

    Article  CAS  PubMed  Google Scholar 

  165. Wen, D. J., Poh, J. S., Ni, S. N., et al., “Influences of prenatal and postnatal maternal depression on amygdala volume and microstructure in young children,” Transl. Psychiatry, 7, No. 4, e1103 (2017), https://doi.org/10.1038/tp.2017.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Willner, P., “The validity of animal models of depression,” Psychopharmacology(Berlin), 83, No. 1, 1–16 (1984).

    Article  CAS  Google Scholar 

  167. Yamada, K., “Single exposure to antidepressants during infancy is associated with delayed behavioral changes in C57BL/6 mice,” World J. Neurosci., 06, 151–164 (2016), https://doi.org/10.4236/wjns.2016.62019.

    Article  CAS  Google Scholar 

  168. Zhang, T. Y. and Meaney, M. J., “Epigenetics and the environmental regulation of the genome and its function,” Annu. Rev. Psychol., 61, 439–466, C1–3 (2010)., https://10.1146/annurev.psych.60.110707.163625.

    Google Scholar 

  169. Zhang, T. Y., Labonté, B., Wen, X. L., et al., “Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans,” Neuropsychopharmacology, 38, No. 1, 111–123 (2013), https://doi.org/10.1038/npp.2012.149.

    Article  PubMed  CAS  Google Scholar 

  170. Zheleznyakova, G. Y., Cao, H., and Schiöth, H. B., “BDNF DNA methylation changes as a biomarker of psychiatric disorders: literature review and open access database analysis,” Behav. Brain Funct., 12, No. 1, 17 (2016), https://doi.org/10.1186/s12993-016-0101-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Zheng, Y., Fan, W., Zhang, X., and Dong, E., “Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus,” Epigenetics, 11, No. 2, 150–162 (2016), https://doi.org/10.1080/15592294.2016.1146850.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Zinni, M., Colella, M., Batista Novais, A. R., et al., “Modulating the oxytocin system during the perinatal period: A new strategy for neuroprotection of the immature brain?” Front. Neurol., 9, 229 (2018); eCollection 2018, https://doi.org/10.3389/fneur.2018.00229.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zubova, O. B. and Oknina, N. B., “Functional characteristics of the developing brain after postnatal immunization: analysis of behavior,” Zh. Vyssh. Nerv. Deyat., 38, No. 2, 305–312 (1988).

    CAS  Google Scholar 

  174. Zubova, O. B., Oknina, N. B., Nikitina, G. M., et al., “Comparative characteristics of short-term plasticity in the hippocampus of adult and developing rats,” Zh. Vyssh. Nerv. Deyat., 39, No. 5, 968–970 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Pankova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol, 69, No, 4, pp, 413–436, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankova, N.B., Latanov, A.V. The Developing Brain as a Target for Experimental Treatments in Modeling Pathological Processes. Neurosci Behav Physi 50, 552–566 (2020). https://doi.org/10.1007/s11055-020-00936-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00936-9

Keywords

Navigation