Skip to main content
Log in

Hippocampal Neurogenesis in Epileptogenesis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review presents data on the characteristics of the reorganization of the hippocampus associated with impairment to neurogenesis in epileptiform states of different etiologies. Data on the effects of convulsive states of different severities and frequencies on the levels of proliferation, migration, and insertion of new cells into the hippocampal neural network are presented and anomalies in newly formed granule cells are described. The focus is placed on possible explanations of existing contradictions in anybody assessment of the importance of neurogenesis in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Altman, “Are new neurons formed in the brains of adult mammals?” Science, 135, No. 3509, 1127–1128 (1962).

    CAS  Google Scholar 

  2. P. Rakic and R. S. Nowakowski, “The time of origin of neurons in the hippocampal region of the rhesus monkey,” J. Comp. Neurol., 196, No. 1, 99–128 (1981).

    CAS  PubMed  Google Scholar 

  3. P. S. Eriksson, E. Perfilieva, T. Bjork-Eriksson, et al., “Neurogenesis in the adult human hippocampus,” Nat. Med., 4, No. 11, 1313–1317 (1998).

    CAS  PubMed  Google Scholar 

  4. K. L. Spalding, R. D. Bhardwaj, B. A. Buchholz, et al., “Retrospective birth dating of Cells in humans,” Cell, 122, No. 1, 133–143 (2005).

    CAS  PubMed  Google Scholar 

  5. J. T. Goncalves, S. T. Schafer, and F. H. Gage, “Adult neurogenesis in the hippocampus: From stem Cells to behavior,” Cell, 167, No. 4, 897–914 (2016).

    CAS  PubMed  Google Scholar 

  6. R. S. Duman and N. Li, “A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 367, No. 1601, 2475–2484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. J. M. Gil, P. Mohapel, I. M. Araujo, et al., “Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice,” Neurobiol. Dis., 20, No. 3, 744–751 (2005).

    CAS  PubMed  Google Scholar 

  8. G. U. Hoglinger, P. Rizk, M. P. Muriel, et al., “Dopamine depletion impairs precursor cell proliferation in Parkinson disease,” Nat. Neurosci., 7, No. 7, 726–735 (2004).

    PubMed  Google Scholar 

  9. B. L. Jacobs, H. van Praag, and F. H. Gage, “Adult brain neurogenesis and psychiatry: a novel theory of depression,” Mol. Psychiatry, 5, No. 3, 262–269 (2000).

    CAS  PubMed  Google Scholar 

  10. L. Peng and M. A. Bonaguidi, “Function and dysfunction of adult hippocampal neurogenesis in regeneration and disease,” Am. J. Pathol., 188, No. 1, 23–28 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. C. D. Clelland, M. Choi, C. Romberg, et al., “A functional role for adult hippocampal neurogenesis in spatial pattern separation,” Science, 325, 210–213 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. O. Lazarov, M. P. Mattson, D. A. Peterson, et al., “When neurogenesis encounters aging and disease,” Trends Neurosci., 33, 569–579 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. K. Jin, A. L. Peel, X. O. Mao, et al., “Increased hippocampal neurogenesis in Alzheimer’s disease,” Proc. Natl. Acad. Sci. USA, 101, No. 1, 343–347 (2004).

    CAS  PubMed  Google Scholar 

  14. Y. Mu and F. H. Gage, “Adult hippocampal neurogenesis and its role in Alzheimer’s disease,” Mol. Neurodegener., 6, 85 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. J. H. Margerison and J. A. Corsellis, “Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes,” Brain, 89, No. 3, 499–530 (1966).

    CAS  PubMed  Google Scholar 

  16. T. Sutula, X. X. He, J. Cavazos, and G. Scott, “Synaptic reorganization in the hippocampus induced by abnormal functional activity,” Science, 239, No. 4844, 1147–1150 (1988).

    CAS  PubMed  Google Scholar 

  17. L. E. Mello, E. A. Cavalheiro, A. M. Tan, et al., “Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting,” Epilepsia, 34, No. 6, 985–995 (1993).

    CAS  PubMed  Google Scholar 

  18. W. P. Gray and L. E. Sundstrom, “Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat,” Brain Res., 790, No. 1–2, 52–59 (1998).

    CAS  PubMed  Google Scholar 

  19. J. M. Parent, T. W. Yu, R. T. Leibowitz, et al., “Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus,” J. Neurosci., 17, No. 10, 3727–3738 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Pekcec, M. Lupke, R. Baumann, et al., “Modulation of neurogenesis by targeted hippocampal irradiation fails to affect kindling progression,” Hippocampus, 21, No. 8, 866–876 (2011).

    PubMed  Google Scholar 

  21. K. Huttmann, M. Sadgrove, A. Wallraff, et al., “Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis,” Eur. J. Neurosci., 18, No. 10, 2769–2778 (2003).

    PubMed  Google Scholar 

  22. S. Jessberger, B. Romer, H. Babu, and G. Kempermann, “Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells,” Exp. Neurol., 196, No. 2, 342–351 (2005).

    CAS  PubMed  Google Scholar 

  23. L. S. Overstreet-Wadiche, D. A. Bromberg, A. L. Bensen, and G. L. Westbrook, “Seizures accelerate functional integration of adult- generated granule cells,” J. Neurosci., 26, No. 15, 4095–4103 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. B. Hattiangady, M. S. Rao, and A. K. Shetty, “Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus,” Neurobiol. Dis., 17, No. 3, 473–490 (2004).

    CAS  PubMed  Google Scholar 

  25. K.-H. Jung, K. Chu, M. Kim, et al., “Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus,” Eur. J. Neurosci., 19, No. 12, 3219–3226 (2004).

    PubMed  Google Scholar 

  26. R. Kleene and M. Schachner, “Glycans and neural cell interactions,” Nat. Rev. Neurosci., 5, No. 3, 195–208 (2004).

    CAS  PubMed  Google Scholar 

  27. A. Pekcec, M. Muhlenhoff, R. Gerardy-Schahn, and H. Potschka, “Impact of the PSA-NCAM system on pathophysiology in a chronic rodent model of temporal lobe epilepsy,” Neurobiol. Dis., 27, No. 1, 54–66 (2007).

    CAS  PubMed  Google Scholar 

  28. K. O. Cho, Z. R. Lybrand, N. Ito, et al., “Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline,” Nat. Commun., 6, 6606 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. S. S. Iyengar, J. J. LaFrancois, D. Friedman, et al., “Suppression of adult neurogenesis increases the acute effects of kainic acid,” Exp. Neurol., 264, 135–149 (2015).

    CAS  PubMed  Google Scholar 

  30. A. Sierra, S. Martin-Suárez, R. Valcárcel-Martín, et al., “Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis,” Cell Stem Cell, 16, No. 5, 488–503 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. D. Hsu, “The dentate gyrus as a filter or gate: a look back and a look ahead,” Progr. Brain Res., 163, 601–613 (2007).

    Google Scholar 

  32. J. J. Lawrence and C. J. McBain, “Interneuron diversity series: containing the detonation-feedforward inhibition in the CA3 hippocampus,” Trends Neurosci., 26, No. 11, 631–640 (2003).

    CAS  PubMed  Google Scholar 

  33. U. Heinemann, H. Beck, J. P. Dreier, et al., “The dentate gyrus as a regulated gate for the propagation of epileptiform activity,” Epilepsy Res., Suppl. 7, 273–280 (1992).

  34. E. W. Lothman, J. L. Stringer, and E. H. Bertram, “The dentate gyrus as a control point for seizures in the hippocampus and beyond,” Epilepsy Res., Suppl. 7, 301–313 (1992).

  35. S. C. Danzer, “Depression, stress, epilepsy and adult neurogenesis,” Exp. Neurol., 233, No. 1, 22–32 (2012).

    PubMed  Google Scholar 

  36. K. Dashtipour, P. H. Tran, M. M. Okazaki, et al., “Ultrastructural features and synaptic connections of hilar ectopic granule cells in the rat dentate gyrus are different from those of granule cells in the granule cell layer,” Brain Res., 890, No. 2, 261–271 (2001).

    CAS  PubMed  Google Scholar 

  37. H. E. Scharfman, J. H. Goodman, and A. L. Sollas, “Granule-like neurons at the Hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: Functional implications of seizure-induced neurogenesis,” J. Neurosci., 20, No. 16, 6144–6158 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. C. Vivar and H. van Praag, “Functional circuits of new neurons in the dentate gyrus,” Front. Neural Circuits, 7, 15 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. P. Bielefeld, E. A. van Vliet, J. A. Gorter, et al., “Different subsets of newborn granule cells: a possible role in epileptogenesis?” Eur. J. Neurosci., 39, No. 1, 1–11 (2014).

    PubMed  Google Scholar 

  40. N. V. Gulyaeva, “Aberrant neurogenesis in adult epileptic brain: Compensatory or pathologic,” J. Neurochem., 4, No. 2, 84–89 (2010).

    Google Scholar 

  41. H. E. Scharfman, A. L. Sollas, and J. H. Goodman, “Spontaneous recurrent seizures after pilocarpine-induced status epilepticus activate calbindin-immunoreactive hilar cells of the rat dentate gyrus,” Neuroscience, 111, No. 1, 71–81 (2002).

    CAS  PubMed  Google Scholar 

  42. M. S. Hester and S. C. Danzer, “Accumulation of abnormal adultgenerated hippocampal granule cells predicts seizure frequency and severity,” J. Neurosci., 33, No. 21, 8926–8936 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. R. Y. Pun, I. J. Rolle, C. L. Lasarge, et al., “Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy,” Neuron, 75, No. 6, 1022–1034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. J. A. Gorter, E. A. van Vliet, E. Aronica, and F. H. Lopes da Silva, “Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons,” Eur. J. Neurosci., 13, No. 4, 657–669 (2001).

    CAS  PubMed  Google Scholar 

  45. M. M. Okazaki, D. A. Evenson, and J. V. Nadler, “Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin,” J. Comp. Neurol., 352, No. 4, 515–534 (1995).

    CAS  PubMed  Google Scholar 

  46. A. Represa, J. Niquet, H. Pollard, and Y. Ben-Ari, “Cell death, gliosis, and synaptic remodeling in the hippocampus of epileptic rats,” J. Neurobiol., 26, No. 3, 413–425 (1995).

    CAS  PubMed  Google Scholar 

  47. P. S. Buckmaster and F. E. Dudek, “In vivo intracellular analysis of granule cell axon reorganization in epileptic rats,” J. Neurophysiol., 81, No. 2, 712–721 (1999).

    CAS  PubMed  Google Scholar 

  48. R. S. Sloviter, “Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats,” Neurosci. Lett., 137, No. 1, 91–96 (1992).

    CAS  PubMed  Google Scholar 

  49. R. N. Romcy-Pereira, and N. Garcia-Cairasco, “Hippocampal cell proliferation and epileptogenesis after audiogenic kindling are not accompanied by mossy fiber sprouting or fluoro-jade staining,” Neuroscience, 119, No. 2, 533–546 (2003).

    CAS  PubMed  Google Scholar 

  50. L. Seress and L. Mrzljak, “Basal dendrites of granule cells are normal features of the fetal and adult dentate gyrus of both monkey and human hippocampal formations,” Brain Res., 405, No. 1, 169–174 (1987).

    CAS  PubMed  Google Scholar 

  51. L. A. Shapiro, M. J. Korn, and C. E. Ribak, “Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes,” Neuroscience, 136, No. 3, 823–831 (2005).

    CAS  PubMed  Google Scholar 

  52. K. Dashtipour, A. M. Wong, A. Obenaus, et al., “Temporal profile of hilar basal dendrite formation on dentate granule cells after status epilepticus,” Epilepsy Res., 54, No. 2–3, 141–151 (2003).

    PubMed  Google Scholar 

  53. C. E. Ribak, P. H. Tran, I. Spigelman, et al., “Status epilepticus-induced hilar basal dendrites on rodent granule cells contribute to recurrent excitatory circuitry,” J. Comp. Neurol., 428, No. 2, 240–253 (2000).

    CAS  PubMed  Google Scholar 

  54. B. L. Murphy, R. D. Hofacer, C. N. Faulkner, et al., “Abnormalities of granule cell dendritic structure are a prominent feature of the intrahippocampal kainic acid model of epilepsy despite reduced postinjury neurogenesis,” Epilepsia, 53, No. 5, 908–921 (2012).

    PubMed  PubMed Central  Google Scholar 

  55. K. Jakubs, A. Nanobashvili, S. Bonde, et al., “Environment matters: synaptic properties of Neurons born in the epileptic adult brain develop to reduce excitability,” Neuron, 52, No. 6, 1047–1059 (2006).

    CAS  PubMed  Google Scholar 

  56. J. C. Wood, J. S. Jackson, K. Jakubs, et al., “Functional integration of new hippocampal neurons following insults to the adult brain is determined by characteristics of pathological environment,” Exp. Neurol., 229, No. 2, 484–493 (2011).

    PubMed  Google Scholar 

  57. M. Jafari, J. Soerensen, R. M. Bogdanovic, et al., “Long-term genetic fate mapping of adult generated neurons in a mouse temporal lobe epilepsy model,” Neurobiol. Dis., 48, No. 3, 454–463 (2012).

    PubMed  Google Scholar 

  58. J. M. Parent, S. Janumpalli, J. O. McNamara, and D. H. Lowenstein, “Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat,” Neurosci. Lett., 247, No. 1, 9–12 (1998).

    CAS  PubMed  Google Scholar 

  59. P. Mohapel, C. T. Ekdahl, and O. Lindvall, “Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus,” Neurobiol. Dis., 15, No. 2, 196–205 (2004).

    PubMed  Google Scholar 

  60. Y. W. Hung, D. I. Yang, P. Y. Huang, et al., “The duration of sustained convulsive seizures determines the pattern of hippocampal neurogenesis and the development of spontaneous epilepsy in rats,” Epilepsy Res., 98, No. 2–3, 206–215 (2012).

    PubMed  Google Scholar 

  61. T. Babb, W. Kupfer, J. Pretorius, et al., “Synaptic reorganization by mossy fibers in human epileptic fascia dentata,” Neuroscience, 42, No. 2, 351–363 (1991).

    CAS  PubMed  Google Scholar 

  62. B. L. Murphy, R. Y. Pun, H. Yin, et al., “Heterogeneous integration of adult-generated granule cells into the epileptic brain,” J. Neurosci., 31, No. 1, 105–117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. R. Z. Zhan, O. Timofeeva, and J. V. Nadler, “High ratio of synaptic excitation to synaptic inhibition in hilar ectopic granule cells of pilocarpine-treated rats,” J. Neurophysiol., 104, No. 6, 3293–3304 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. J. J. Radley and B. L. Jacobs, “5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus,” Brain Res., 955, No. 1–2, 264–267 (2002).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chernigovskaya.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 104, No. 10, pp. 1152–1162, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasluzova, E.V., Glazova, M.V. & Chernigovskaya, E.V. Hippocampal Neurogenesis in Epileptogenesis. Neurosci Behav Physi 50, 239–244 (2020). https://doi.org/10.1007/s11055-019-00892-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00892-z

Keywords

Navigation