Skip to main content
Log in

Serotonin and Dopamine in Biological Models of Depression

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Depression in the biological models considered here can be split into two opposite patterns of changes in serotonin and dopamine levels, corresponding to passive and active stress response tactics [Selye, 1979] – ↑5HT, ↓DA and ↓5HT, ↑DA. Unavoidable pain stimulation, chronic moderate aversive stimulation, unavoidable social suppression, and learned helplessness in response to social defeats are characterized by the ↑5HT, ↓DA pattern. Aggressive behavior to an intruder, avoidance of an aggressive inhabitant, avoidance of pain stimulation, and injection of ketamine all activate the ↓5HT, ↑DA pattern. The physiological nucleus of learned helplessness and social avoidance may be the Pavlovian conditioned freezing reflex in response to a threat and the conditioned avoidance reaction, respectively. Further studies should address the following questions: how does neuron activity in the raphe nuclei change during forced swimming? Why does the increase in the serotonin level in response to antidepressants increase swimming while serotonin neurons are inhibited during swimming? Why is the increase in the serotonin level in the state of learned helplessness combined with suppression of active swimming?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, J., “Ketamine minus the trip: new hope for treatment-resistant depression,” JAMA, 318, No. 20, 1964–1966 (2017).

    Article  PubMed  Google Scholar 

  • Admon, R. and Pizzagalli, D. A., “Dysfunctional reward processing in depression,” Curr. Opin. Psychol., 4, 114–118 (2015).

    Article  PubMed  Google Scholar 

  • Aghajanian, G. K. and Sanders-Bush, E., Neuropsychopharmacology: The Fifth Generation of Progress, Chpt. 2, Serotonin (2002) pp. 15–34.

  • Amat, J., Aleksejev, R. M., Paul, E., et al., “Behavioral control over shock blocks behavioral and neurochemical effects of later social defeat,” Neuroscience, 165, 1031–1038 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Amat, J., Baratta, M. V., Paul, E., et al., “Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus,” Nat. Neurosci., 8, No. 3, 365–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Amat, J., Dolzani, S. D., Tilden, S., et al., “Previous ketamine produces an enduring blockade of neurochemical and behavioral effects of uncontrollable stress,” J. Neurosci., 36, No. 1, 153–161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amat, J., Paul, E., Watkins, L. R., and Maier, S. F., “Activation of the ventral medial prefrontal cortex during an uncontrollable stressor reproduces both the immediate and long-term protective effects of behavioral control,” Neuroscience, 154, 1178–1186 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Artigas, F. and Bortolozzi, A., “Therapeutic potential of conjugated siRNAs for the treatment of major depressive disorder,” Neuropsychopharmacology, 42, No. 1, 371 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Barch, D. M., Pagliaccio, D., and Luking, K., “Mechanisms underlying motivational deficits in psychopathology: similarities and differences in depression and schizophrenia,” Curr. Top. Behav. Neurosci., 27, 411–49 (2016).

    Article  PubMed  Google Scholar 

  • Bath, K. G., Russo, S. J., Pleil, K. E., et al., “Circuit and synaptic mechanisms of repeated stress: Perspectives from differing contexts, duration, and development,” Neurobiol. Stress, 7, 137–151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Belujon, P. and Grace, A. A., “Dopamine system dysregulation in major depressive disorders,” Int. J. Neuropsychopharmacol., 20, No. 12, 1036–1046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belujon, P. and Grace, A. A., “Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity,” Biol. Psychiatry, 76, 927–936 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge, K. C. and Robinson, T. E., “Liking, wanting, and incentive sensitization theory of addiction,” Am. Psychol., 71, No. 8, 670–679 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Berridge, K. C. and Robinson, T. E., “What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience,” Brain Res. Rev., 28, No. 3, 309–69 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Bortolozzi, A., Castane, A., Semakova, J., et al., “Selective siRNA-mediated suppression of 5HT1A autoreceptors evokes strong antidepressant-like effects,” Mol. Psychiatry, 17, No. 6, 612–623 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Bosker, F. J., Cremers, T. I. F. H., Jongsma, M. E., et al., “Acute and chronic effects of citalopram on postsynaptic 5-hydroxytryptamine1A receptor- mediated feedback: a microdialysis study in the amygdale,” J. Neurochem., 76, 1645–1653 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Boureau, Y.-L. and Dayan, P., “Opponency revisited: competition and cooperation between dopamine and serotonin,” Neuropsychopharmacology, 36, No. 1, 74–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Bruzos-Cidon, C., Miguelez, C., Rodríguez, J. J., et al., “Altered neuronal activity and differential sensitivity to acute antidepressants of locus coeruleus and dorsal raphe nucleus in Wistar Kyoto rats: A comparative study with Sprague Dawley and Wistar rats,” Eur. Neuropsychopharmacol., 24, 1112–1122 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Burghardt, N. S., and Bauer, E. P., “Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits,” Neuroscience, 247, 253–272 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Burghardt, N. S., Bush, D. E. A., McEwen, B. S., and LeDoux, J. E., “Acute SSRIs increase conditioned fear expression: blockade with a 5HT2C receptor antagonist,” Biol. Psychiatry, 62, No. 10, 1111–1118 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campese, V. D., Sears, R. M., Moscarello, J. M., et al., “The neural foundations of reaction and action in aversive motivation,” Curr. Top. Behav. Neurosci., 27, 171–195 (2016).

    Article  PubMed  Google Scholar 

  • Carhart-Harris, R. L. and Nutt, D. J., “Serotonin and brain function: a tale of two receptors,” J. Psychopharmacol., 31, No. 9, 1091–1120 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challis, C. and Berton, O., “Top-down control of serotonin systems by the prefrontal cortex: a path towards restored socioemotional function in depression,” ACS Chem. Neurosci., 6, No. 7, 1040–1054 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Challis, C., Beck, S. G., and Berton, O., “Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat,” Front. Behav. Neurosci., 8, Art. 43, 1–14 (2014).

  • Chaudhury, D., Liu, H., and Han, M.-H., “Neuronal correlates of depression,” Cell. Mol. Life Sci., 72, No. 24, 4825–4848 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhury, D., Walsh, J. J., Friedman, A. K., et al., “Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons,” Nature, 493, No. 7433, 532–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Cowen, P. J. and Browning, M., “What has serotonin to do with depression?” World Psychiatry, 14, No. 2, 158–160 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Darvas, M., Fadok, J. P., and Palmiter, R. D., “Requirement of dopamine signaling in the amygdale and striatum for learning and maintenance of a conditioned avoidance response,” Learn. Mem., 18, 136–143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, J. M., Giakas, W. J., Qu, J., et al., “Should we treat depression with drugs or psychological interventions? A reply to Ioannidis,” Philos. Ethics Hum. Med., 6, 8 (2011).

    Article  Google Scholar 

  • De Kloet, E. R. and Molendijk, M. L., “Coping with the forced swim stressor: towards understanding an adaptive mechanism,” Neural Plast., 2016, Art. ID 6503162.

  • Dolzani, S. D., Baratta, M. V., Amat, J., et al., “Activation of a habenulo-raphe circuit is critical for the behavioral and neurochemical consequences of uncontrollable stress in the male rat,” eNeuro, 3, No. 5, 1–17 (2016).

    Article  Google Scholar 

  • Duman, R. S., Aghajanian, G. K., Sanacora, G., and Krystal, J. H., “Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants,” Nat. Med., 22, No. 3, 238–249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer, A. G. and Ullsperger, M., “An update on the role of serotonin and its interplay with dopamine for reward,” Front. Hum. Neurosci., 11, 1–10 (2017).

    Google Scholar 

  • Fonseca, M. S., Murakami, M., and Mainen, Z. F., “Activation of dorsal raphe serotonergic neurons promotes waiting but is not reinforcing,” Curr. Biol., 25, 1–10 (2015).

    Article  CAS  Google Scholar 

  • Forgeard, M. J. C., Haigh, E. A. P., Beck, A. T., et al., “Beyond depression: towards a process-based approach to research, diagnosis, and treatment,” Clin, Psychol., 18, No. 4, 275–299 (2011).

    Google Scholar 

  • Fuchicami, F., Thomas, A., Liu, R., et al., “Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions,” Proc. Natl. Acad. Sci. USA, 112, No. 26, 8106–8111 (2015).

    Article  CAS  Google Scholar 

  • Galyamina, A. G., Kovalenko, I. L., Smagin, D. A., and Kudryavtseva, N. N., “Interaction of depression and anxiety in the development of mixed anxious-depressive disorder. Experimental studies of the mechanisms of comorbidity,” Zh. Vyssh. Nerv. Deyat., 66, No. 2, 181–201 (2016).

    CAS  Google Scholar 

  • Golden, S. A., Covington III, H. E., Berton, O., and Russo, S. J., “A standardized protocol for repeated social defeat stress in mice,” Nat. Protoc., 6, No. 8, 1183–1191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goncharov, I. A., Oblomov, GIKhL, Moscow (1953).

    Google Scholar 

  • Grigor’yan, G. A. and Gulyaeva, N. V., “Modeling of depression in animals: behavior as the basis of a methodology and assessment and classification criteria,” Zh. Vyssh. Nerv. Deyat., 65, No. 6, 643–660 (2015).

    Google Scholar 

  • Hajós, M., Hoffmann, W. E., and Weaver, R. J., “Regulation of septo-hippocampal activity by 5-hydroxytryptamine2C receptors,” J. Pharmacol. Exp. Ther., 306, No. 2, 605–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hamani, C., Diwan, M., Macedo, C. E., et al., “AntidepressantLike effects of medial prefrontal cortex deep brain stimulation in rats,” Biol. Psychiatry, 67, 117–124 (2010).

    Article  PubMed  Google Scholar 

  • Hervás, I., Queiroz, C. M. T., Adell, A., and Artigas, F., “Role of uptake inhibition and autoreceptor activation in the control of 5HT release in the frontal cortex and dorsal hippocampus of the rat,” Brit. J. Pharmacol., 130, 160–166 (2000).

    Article  Google Scholar 

  • Heshmati, M. and Russo, S. J., “Anhedonia and the brain reward circuitry in depression,” Curr. Behav. Neurosci. Rep., 2, No. 3, 146–153 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hjorth, S., Bengtsson, H. J., Kullberg, A., et al., “Serotonin autoreceptor function and antidepressant drug action,” J. Psychopharmacol., 14, No. 2, 177–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Holly, E. N. and Miczek, K. A., “Ventral tegmental area dopamine revisited: effects of acute and repeated stress,” Psychopharmacology (Berlin), 233, No. 2, 163–86 (2016).

    Article  CAS  Google Scholar 

  • Ilango, A., Kesner, A. J., Broker, C. J., et al., “Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: parametric and reinforcement-schedule analyses,” Front. Behav. Neurosci., 8, 155 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Ioannidis, J. P., “Effectiveness of antidepressants: an evidence myth constructed from a thousand randomized trials?” Philos. Ethics Humanit. Med., 3, 14 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato, T., Kasahara, T., Kubota-Sakashita, M., et al., “Animal models of recurrent or bipolar depression,” Neuroscience, 321, 189–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Khan, A. and Brown, W. A., “Antidepressants versus placebo in major depression: an overview,” World Psychiatry, 14, 294–300 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Knowland, D. and Lim, B. K., “Circuit-based frameworks of depressive behaviors: The role of reward circuitry and beyond,” Pharmacol. Biochem. Behav. (2018), doi https://doi.org/10.1016/j.pbb.2017.12.010.

  • Knowland, D., Lilascharoen, V., Pacia, C. P., et al., “Distinct ventral pallidal neural populations mediate separate symptoms of depression,” Cell, 170, 1–14 (2017).

    Article  CAS  Google Scholar 

  • Koob, G. F., “The dopamine anhedonia hypothesis: a pharmacological phrenology,” Behav. Brain Sci., 5, 63–64 (1982).

    Article  Google Scholar 

  • Kudryavtseva, N. N. and Avgustinovich, D. F., “Molecular mechanisms of social behavior: commentary on the report by Berton et al.,” Neironauki, 4, No. 6, 33–35 (2006).

    Google Scholar 

  • Kudryavtseva, N. N., “Serotoninergic control of aggressive behavior: new approaches – new interpretations (review),” Zh. Vyssh. Nerv. Deyat., 65, No. 5, 546–563 (2015).

    CAS  Google Scholar 

  • Kudryavtseva, N. N., “The sensory contact model for the study of aggressive and submissive behaviors in male mice,” Aggress. Behav., 17, No. 5, 285–291 (1991).

    Article  Google Scholar 

  • Kudryavtseva, N. N., Bakshtanovskaya, I. V., and Koryakina, L. A., “Social model of depression in mice of C57BL/6J strain,” Pharmacol. Biochem. Behav., 38, 315–320 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtseva, N. N., Smagin, D. A., Kovalenko, I. L., and Vishnivetskaya, G. B., “Repeated positive fighting experience in male inbred mice,” Nat. Protoc., 9, No. 11, 2705–2717 (2014).

    Article  PubMed  Google Scholar 

  • Laurent, V., Leung, B., Maidment, N., Balleine, B. W., “μ- and δ-opioid-related processes in the accumbens core and shell differentially mediate the influence of reward-guided and stimulus-guided decisions on choice,” J. Neurosci., 32, No. 5, 1875–1883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent, V., Wong, F. L., and Balleine, B. W., “The lateral habenula and its input to the rostromedial tegmental nucleus mediates outcome-specific conditioned inhibition,” J. Neurosci., 37, No. 45, 10932–10942 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux, J. E. and Pine, D. S., “Using neuroscience to help understand fear and anxiety: a two-system framework,” Am. J. Psychiatry, 173, 1083–1093 (2016).

    Article  PubMed  Google Scholar 

  • Li, B., Piriz, J., Mirrione, M., et al., “Synaptic potentiation onto habenula neurons in the learned helplessness model of depression,” Nature, 470, No. 7335, 535–539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman, J., Grace, A. A., and Duzel, E., “A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP,” Trends Neurosci., 34, No. 10, 536–547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B., Liu, J., Wang, M., et al., “From serotonin to neuroplasticity: evolvement of theories for major depressive disorder,” Front. Cell. Neurosci., 11, 305, 1–9 (2017).

    Google Scholar 

  • Liu, R., Jolas, T., and Aghajanian, G., “Serotonin 5HT2 receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus,” Brain Res., 873, 34–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Liu, R.-J., Ota, K. T., Dutheil, S., et al., “Ketamine strengthens CRFactivated amygdala inputs to basal dendrites in mPFC layer V pyramidal cells in the prelimbic but not infralimbic subregion, a key suppressor of stress responses,” Neuropsychopharmacology, 40, No. 9, 2066–2075 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier, S. F. and Seligman, M. E. P., “Learned helplessness at fifty: insights from neuroscience,” Psychol. Rev., 123, No. 4, 349–367 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcinkiewcz, C. A., Mazzone, C. M., D’Agostino, G., et al., “Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala,” Nature, 537, No. 7618, 97–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mileykovskiy, B. and Morales, M., “Duration of inhibition of ventral tegmental area dopamine neurons encodes a level of conditioned fear,” J. Neurosci., 31, No. 20, 7471–7476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki, K. W., Miyazaki, K., Tanaka, K. F., et al., “Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards,” Curr. Biol., 24, No. 17, 2033–2040 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki, K., Miyazaki, K. W., and Doya, K., “Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards,” J. Neurosci., 31, No. 2, 469–479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki, K., Miyazaki, K. W., and Doya, K., “The role of serotonin in the regulation of patience and impulsivity,” Mol. Neurobiol., 45, 213–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molendijk, M. L. and de Kloet, E. R., “Immobility in the forced swim test is adaptive and does not reflect depression,” Psychoneuroendocrinology, 62, 389–391 (2015).

    Article  PubMed  Google Scholar 

  • Moscarello, J. M. and LeDoux, J. E., “Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions,” J. Neurosci., 33, No. 9, 3815–3823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosolov, S. N., Anxiety and Depression: Comorbidity and Therapy, Artinfo Publishing, Moscow (2007).

    Google Scholar 

  • Nakanishi, S., Hikida, T., and Yawata, S., “Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors,” Neuroscience, 282, 49–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Ohmura, Y., Tanaka, K. F., Tsunematsu, T., et al., “Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice,” Int. J. Neuropsychopharmacol., 17, 1777–1783 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Pavlova, I. V. and Rysakova, M. P., “Effects of administration of serotonin 5HT1A receptor ligands into the amygdala on the behavior of rats with different manifestations of conditioned reflex fear,” Zh. Vyssh. Nerv. Deyat., 66, No. 6, 710–724 (2016).

    Google Scholar 

  • Pine, D. S. and LeDoux, J. E., “Elevating the role of subjective experience in the clinic: response to Fanselow and Pennington,” Am. J. Psychiatry, 174, No. 11, 1121–1122 (2017).

    Article  PubMed  Google Scholar 

  • Robinson, S., Sandstrom, S. M., Denenberg, V. H., and Palmiter, R. D., “Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards,” Behav. Neurosci., 119, No. 1, 5–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Salamone, J. D., Yohn, S. E., López-Cruz, L., et al., “Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology,” Brain, 139, No. 5, 1325–1347 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Saul’skaya, N. B. and Marchuk, O. E., “Serotoninergic stimulation of the medial prefrontal cortex during acquisition of a conditioned reflex reaction to fear promotes the formation of generalized fear,” Zh. Vyssh. Nerv. Deyat., 68 (2018).

  • Schultz, W., Stauffer, W. R., and Lak, A., “The phasic dopamine signal maturing: from reward via behavioural activation to formal economic utility,” Curr. Opin. Neurobiol., 43, 139–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Selye, G., Stress without Distress, Moscow (1979).

  • Shenhav, A. and Botvinick, M. M., “Motivated action: new light on prefrontal-neuromodulatory circuits,” Curr. Biol., 23, No. 4, R161–R162 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Shiflett, M. W. and Balleine, B. W., “At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation,” Eur. J. Neurosci., 32, 1735–1743 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Slattery, D. A., Neumann, I. D., and Cryan, J. F., “Transient inactivation of the infralimbic cortex induces antidepressant-like effects in the rat,” J. Psychopharmacol., 25, No. 10, 1295–1303 (2011).

    Article  PubMed  Google Scholar 

  • Srejic, L. R., Hamani, C., and Hutchison, W. D., “High-frquency stimulation of the medial prefrontal cortex decreases cellular firing in the dorsal raphe,” Eur. J. Neurosci., 41, No. 9, 1219–26 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Teissier, A., Chemiakine, A., Inbar, B., et al., “Activity of raphe serotonergic neurons controls emotional behaviors,” Cell Rep., 13, No. 9, 1965–1976 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson, A. A. and Martinet, A. V., A Practical English Grammar, Oxford University Press (1986).

  • Treadway, M. T. and Zald, D. H., “Reconsidering anhedonia in depression: lessons from translational neuroscience,” Neurosci. Biobehav. Rev., 35, No. 3, 537–555 (2011).

    Article  PubMed  Google Scholar 

  • Treadway, M. T., “The Neurobiology of motivational deficits in depression – an update on candidate pathomechanisms,” Curr. Top. Behav. Neurosci., 27, 337–55 (2015).

    Article  Google Scholar 

  • Tye, K. M., Mirzabekov, J. J., Warden, M. R., et al., “Dopamine neurons modulate neural encoding and expression of depression-related behaviour,” Nature, 493, No. 7433, 537–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Urban, D. J., Zhu, H., Marcinkiewcz, C. A., et al., “Elucidation of the behavioral program and neuronal network encoded by dorsal raphe serotonergic neurons,” Neuropsychopharmacology, 41, No. 5, 1404–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Veerakumar, A., Challis, C., Gupta, P., et al., “Antidepressant-like effects of cortical deep brain stimulation coincide with pro-neuroplastic adaptations of serotonin systems,” Biol. Psychiatry, 76, No. 3, 203– 212 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Warden, M. R., Selimbeyoglu, A., Mirzabekov, J. J., et al., “A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge,” Nature, 492, No. 7429, 428–432 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassum, K. M., Ostlund, S. B., Maidment, N. T., and Balleine, B. W., “Distinct opioid circuits determine the palatability and the desirability of rewarding events,” Proc. Natl. Acad. Sci. USA, 106, No. 30, 12512–12517 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Weissbourd, B., Ren, J., DeLoach, K. E., et al., “Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons,” Neuron, 83, No. 3, 645–662 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel, J. M., Oleson, E. B., Gove, W. N., et al., “Phasic dopamine signals in the nucleus accumbens that cause active avoidance require endocannabinoid mobilization in the midbrain,” Curr. Biol., 28, 1–13 (2018).

    Article  CAS  Google Scholar 

  • Wenzel, J. M., Rauscher, N. A., Cheer, J. F., and Oleson, E. B., “A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature,” ACS Chem. Neurosci., 6, No. 1, 16–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Wise, R. A., “Dual roles of dopamine in food and drug seeking: the drive-reward paradox,” Biol. Psychiatry, 73, No. 9, 819–826 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J., Song, M., Li, F., et al., “Effects of GABA microinjection into dorsal raphe nucleus on behavior and activity of lateral habenular neurons in mice,” Exp. Neurol., 298, 23–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Xu, S., Das, G., Hueske, E., and Tonegawa, S., “Dorsal raphe serotonergic neurons control intertemporal choice under trade-off,” Curr. Biol., 27, 1–9 (2017).

    Article  CAS  Google Scholar 

  • Yadid, G. and Friedman, A., “Dynamics of the dopaminergic system as a key component to the understanding of depression,” Prog. Brain Res., 172, 265–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. S. R., et al., “A critical time window for dopamine actions on the structural plasticity of dendritic spines,” Science, 345, No. 6204, 1616–1620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Maiorov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 68, No. 4, pp. 415–428,

July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latanov, A.V., Korshunov, V.A., Maiorov, V.I. et al. Serotonin and Dopamine in Biological Models of Depression. Neurosci Behav Physi 49, 987–995 (2019). https://doi.org/10.1007/s11055-019-00828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00828-7

Keywords

Navigation