Skip to main content
Log in

Use of Hydrobionts as Alternative Biological Models

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We present here results from model experiments with poikilotherm hydrobionts belonging to different taxonomic groups: crayfish (Pontatacus leptodactylus), fish, i.e., carp (Cyprinus carpio), and amphibians, i.e., axolotl (Ambystoma mexicanum). Fatty dystrophy of the hepatopancreas in crayfish and pathology of the pancreas in carp were modeled by administration of alloxan at doses of 50 and 200 mg/kg, respectively. Crayfish received alloxan into the ventral sinus and fish were treated i.p. Liver pathology in fish was modeled by administration of seven doses of paracetamol 15 g/kg over 14 days. Parenteral administration (into the central sinus of crayfish, i.v. in fish, and i.p. in axolotls) of stem and progenitor cells from mammalian donors (mice) at a dose of 10·106 bone marrow cells (BMC) was found to have effects. Fish and crayfish with pathology displayed intensive tissue regeneration and restoration of damaged parenchymatous organs. Administration of stem cells accelerated the process of regeneration of amputated limbs in axolotls. These results extend the potential of medical-biological studies of in vivo models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. K. Blandova, V. A. Dushkin, A. M. Malashenko, and E. F. Shmitd, Laboratory Animal Strains for Medical-Biological Research, Nauka, Moscow (1983), Iss. 42, p. 105.

  2. V. V. Verkhusha, N. A. Akovbyan, E. N. Efremenko, et al., “Kinetic analysis of maturation and denaturation of the red fluorescent protein DsRed,” Biokhimiya, 66, 1659–1670 (2001).

  3. A. P. Dyban and P. A. Dyban, “Stem cells in experimental and clinical medicine,” Med. Akad. Zh., 2, No. 3, 3–25 (2002).

    Google Scholar 

  4. N. N. Karkishchenko, “Classical and alternative models in drug toxicology,” Biomeditsina, No. 4, 5–23 (2006).

  5. N. N. Karkishchenko, Basic Biological Modeling, VPK Press, Moscow (2005).

  6. N. V. Kasinskaya, O. I. Stepanova, N. N. Karkishchenko, et al., “The green protein gene as a marker for transplantation of bone marrow stem and progenitor cells,” Biomeditsina, 2, 30–34 (2011).

    Google Scholar 

  7. A. S. Luk’yanov, L. L. Lukyanova, N. M. Chernavskaya, and S. F. Gilyazov, Bioethics. Alternatives to Experiments on Animals, Moscow State University Press, Moscow (1996).

  8. N. N. Mushkambarov and S. L. Kuznetsov, Molecular Biology, MIA, Moscow (2003).

  9. G. I. Pronina, “Use of cytochemical methods for determination of phagocyte activity of blood or hemolymph cells from different species of hydrobionts for assessment of their state of health,” Izv. Orenburg. Gos. Agrar. Univ., 20, No. 4, 160–163 (2008).

    Google Scholar 

  10. G. I. Pronina, N. Yu. Koryagina, A. O. Revyakin, et al., “Hydrobionts as alternative biological models,” Biomeditsina, 3, 102–103 (2014).

    Google Scholar 

  11. T. V. Ryazanova, “Pathological changes in the organs and tissues of the snow crab (Chionoecetes opilio) on the western Kamchatka shelf of the Sea of Okhotsk,” Issled. Vodn. Biol. Resurs. Kamchat. S.-Z. Chasti Tikh. Okeana, 8, 207–216 (2006).

    Google Scholar 

  12. V. G. Savchenko, “Bone marrow transplantation in acute leukemias: arguments for and against,” Ter. Arkhiv., 7, 7–18 (1993).

    Google Scholar 

  13. N. A. Salmova and N. G. Zhuravleva, “Morphological structure of the liver and pancreas in young cod Gadus morthua L.) in artificial rearing conditions,” Vestn. Mosc. Gos. Tekhn. Univ., 15, No. 3, 551–558 (2012).

  14. O. I. Stepanova, N. A. Onishchenko, O. V. Baranova, and T. V. Galakhova, “Use of cells in different fractions of allogeneic bone marrow for the treatment of type 2 diabetes mellitus in a genetic model,” Biomeditsina, 78–81 (2008).

  15. M. G. Shubich, “Detection of cationic protein in the leukocyte cytoplasm using bromophenol blue,” Tsitologiya, 10, 1321–1322 (1974).

    Google Scholar 

  16. J. R. Beaman, R. Finch, H. Gardner, et al., “Mammalian immunoassays for predicting the toxicity of malathion in a laboratory fish model,” J. Toxicol. Environ. Health, 56, 523–542 (1999).

    Article  CAS  Google Scholar 

  17. C. L. Bolis, M. Piccolella, A. Z. Dalla Valle, and J. C. Rankin, “Fish as model in pharmacological and biological research,” Pharmacol. Res., 44, 265–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. R. J. Borski and R. G. Hodson, “Fish research and the Institutional Animal Care and Use Committee,” Institute for Laboratory Animal Res. J., 44, 286–294 (2003).

    Article  CAS  Google Scholar 

  19. B. B. Brodie and J. Axelrod, “The fate of acetophenetidin (phenacetin) in man and methods for the estimation of acetophenitidin and its metabolites in biological material,” J. Pharmacol. Exp. Ther., 94, No. 1, 58–67 (1949).

    Google Scholar 

  20. A. A. Cameron, M. R. Plenderleith, and P. J. Snow, “Organization of the spinal cord in four species of elasmobranch fish: Cytoarchitecture and distribution of serotonin and selected neuropeptides,” J. Comp. Neurol., 297, 210–218 (1990).

  21. N. V. Chandrasekharan, Dai Hu, K. L. Roos, et al., “COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression,” Proc. Natl. Acad. Sci. USA, 99, No. 21, 13926–13931 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. K. A. Cho, S. Y. Ju, S. J. Cho, et al., “Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared with other subpopulations of the bone marrow,” Cell Biol. Int., 33, 772–777 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. D. K. Cooper, B. Ekser, and A. J. Tector, “Immunobiological barriers to xenotransplantation,” Int. J. Surgery, 23, 211–216 (2015).

    Article  Google Scholar 

  24. M. Cox, “Progress on regulations for human-derived therapeutic products,” Med. Device Technol., 14, 32–34 (2003).

    PubMed  Google Scholar 

  25. L. J. Dai, H. Y. Li, L. X. Guan, et al., “The therapeutic potential of bone marrow-derived mesenchymal stem cells on hepatic cirrhosis,” Stem Cell Res., 2, No. 1, 16–25 (2009).

    Article  PubMed  Google Scholar 

  26. R. J. Deans and A. B. Moseley, “Mesenchymal stem cells: biology and potential clinical use,” Exp. Hematology, 28, No. 8, 875–884 (2000).

  27. M. Elsner, M. Tiedge, and B. Guldbakke, “Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan,” Diabetologia, 45, No. 11, 1542–1549 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. The Physiology of Fishes, D. H. Evans and J. B. Claiborne (eds.) (2005), 3rd ed., pp. 616–617.

  29. J. M. Fox, G. Chamberlain, B. A. Ashton, and J. Middleton, “Recent advances into the understanding of mesenchymal stem cell trafficking,” Br. J. Haematol., 137, 491–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. J. A. Gallagher, “Human osteoblast culture,” Methods Molec. Med., 80, 3–18 (2003).

    CAS  Google Scholar 

  31. F. W. Harrison and A. G. Humes (eds.), Microscopic Anatomy of Invertebrates. Decapoda. Crustacea, Wiley-Liss Inc., New York (1992).

    Google Scholar 

  32. J. A. Herd and A. C. Barger, “Simplified technique for chronic catherization of blood vessels,” J. Appl. Physiol., 19, 791–792 (1996).

    Article  Google Scholar 

  33. D. Hess, L. Li, M. Martin, S. Sakano, et al., “Bone marrow-derived stem cells initiate pancreatic regeneration,” Nat. Biotechnol., 21, No. 7, 763–770 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Y. Hori, I. C. Rulifson, B. S. Tsai, et al., “Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells,” Proc. Natl. Acad. Sci. USA, 99, No. 25, 16105–16110 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. B. Isomaa, H. Lilius, and C. Rabergh, “Aquatic toxicology in vitro: a brief review,” ATLA, 22, 243–254 (1994).

    Google Scholar 

  36. R. Johansen, J. R. Needham, D. J. Colquhoun, et al., “Guidelines for health and welfare monitoring of fish used in research,” Lab. Anim., 40, 323–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. P. T. Johnson, Histology of the Blue Crab, Callinectes Sapidus: A Model for the Decapoda, Praeger, New York (1980).

  38. L. S. Kaplow, “A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of Blood and marrow,” Blood, 10, 1023–1029 (1955).

    CAS  PubMed  Google Scholar 

  39. K. A. Kelly, C. M. Havrilla, T. C. Brady, et al., “Oxidative stress in toxicology: Established mammalian and emerging piscine model systems,” Environ. Health Perspect., 106, 375–384 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. D. Kroncke, K. Fehsel, A. Sommer, et al., “Nitric oxide generation during cellular metabolization of the diabetogenic N-methy-l-N-nitroso-urea streptozotozin contributes to islet cell DNA damage,” Biol. Chem. Hoppe Seyler, 376, No. 3, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. J. M. Law, “Mechanistic considerations in small fish carcinogenicity testing,” ILAR J., 42, 274–284 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. R. B. Leonard, “Primary afferent receptive field properties and neurotransmitter candidates in vertebrate lacking unmyelinated fibres,” Prog. Clin. Biol. Res., 176, 135–145 (1985).

    CAS  PubMed  Google Scholar 

  43. D. Lu, A. Mahmood, and M. Chopp, “Biologic transplantation and neurotrophin-induced neuroplasticity after traumatic brain injury,” J. Head Trauma Rehabil., 18, No. 4, 357–376 (2003).

    Article  PubMed  Google Scholar 

  44. P. Martin and P. Bateson (eds.), Measuring Behaviour (Appendix), Cambridge University Press, New York (1986).

  45. G. K. Michalopoulos, “Liver regeneration after partial hepatectomy. Critical analysis of mechanistic dilemmas,” Am. J. Pathol., 176, No. 1, 2–13 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. H. Mirmalek-Sani, D. C. Sullivan, C. Zimmerman, et al., “Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue,” Am. J. Pathol., 183, No. 2, 558–565 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D. B. Morton and P. M. Griffiths, “Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment,” Vet. Rec., H116, 431–436 (1985).

  48. A. Nicholson, J. Sandler, and T. Seidle, “An evaluation of the US High Production Volume (HPV) chemical-testing programme: a study in (ir) relevance, redundancy and retro thinking,” ATLA, 32, Suppl. 1, 335–341 (2004).

  49. P. Niehans, Kriminalität als Zell-Therapeutisches Problem, Stämpfli, Bern (1964).

  50. G. Ostrander, “The laboratory fish,” in: Handbook of Experimental Animals, Academic Press Inc., Waltham, MA (2000).

  51. D. Poll, B. Parekkadan, and C. H. Cho, “Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo,” Hepatology, 47, 1634–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. L. P. Posner, “Pain and distress in fish: A review of the evidence,” Inst. Lab. Animal Res. J., 50, 327–328 (2009).

    Article  CAS  Google Scholar 

  53. D. A. Powers, “Fish as model systems,” Science, 246, 352–358 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. R. Reimschuessel, “A fish model of renal regeneration and development,” ILAR J., 42, 285–291 (2001).

  55. A. N. Rowan, Of Mice, Models and Men – a Critical Evaluation of Animal Research, State Univ. of New York Press, Albany (1984), pp. 323–324.

  56. W. M. Russell and R. L. Birch, The Principles of Humane Experimental Technique, WorldCat Methuen, London (1959), pp. 238–239.

  57. K. H. Ryu, “Liver stem cells derived from the bone marrow and umbilical cord blood,” Int. J. Stem Cells, 2, No. 2, 97–101 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. C. Schullte and R. Nagel, “Testing acute toxicity in embryo of zebrafish, Brachydanio rerio, as an alternative to the acute fish test: preliminary results,” ATLA, 22, 12–19 (1994).

    Google Scholar 

  59. O. Shimomura, F. H. Johnson, and Y. Saiga, “Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea,” J. Cell. Comp. Physiol. 59, 223–239 (1962).

  60. D. H. Smyth, Alternatives to Animal Experiments, Scholar Press & Research Defence Society, London (1978), pp. 218–219.

  61. P. J. Snow, M. B. Plenderplaith, and L. L. Wright, “Quantitative study of primary sensory neurone populations of three species of elasmobranch fish,” J. Comp. Neurol., 334–335 (1993).

  62. V. Sottile, “Bone marrow as a source of stem cells and germ cells? Perspectives for transplantation,” Cell Tissue Res., 328, No. 1, 1–5 (2007).

    Article  PubMed  Google Scholar 

  63. T. Szkudelski, “The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas,” Physiol. Res., 50, No. 6, 536–546 (2001).

    Google Scholar 

  64. S. L. Tomchuck, K. J. Zwezdaryk, S. B. Coffelt, et al., “Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses,” Stem Cells, 26, No. 1, 99–107 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. S. Williams, W. C. Anderson, M. T. Santaguida, and S. J. Dylla, “Patient-derived xenografts, the cancer stem cell,” Lab. Invest., 93, 970–982 (2013).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Pronina.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 103, No. 8, pp. 912–929, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronina, G.I., Koryagina, N.Y., Revyakin, A.O. et al. Use of Hydrobionts as Alternative Biological Models. Neurosci Behav Physi 49, 584–594 (2019). https://doi.org/10.1007/s11055-019-00774-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00774-4

Keywords

Navigation